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Abstract. This thesis is concerned with computations of algebraic K-
theory using the cyclotomic trace map. We use the framework for cy-
clotomic spectra due to Nikolaus and Scholze, which avoids the use of
genuine equivariant homotopy theory. The thesis contains an introduction
followed by two papers.

The first paper computes the K-theory of the coordinate axes in
affine d-space over perfect fields of positive characteristic. This extends
work by Hesselholt in the case d = 2. The analogous results for fields of
characteristic zero were found by Geller, Reid and Weibel in 1989. We also
extend their computations to base rings which are smooth Q-algebras.

In the second paper we revisit the computation, due to Hesselholt
and Madsen, of the K-theory of truncated polynomial algebras for perfect
fields of positive characteristic. The original proof relied on an under-
standing of cyclic polytopes in order to determine the genuine equivariant
homotopy type of the cyclic bar construction for a suitable monoid. Using
the Nikolaus-Scholze framework we achieve the same result using only the
homology of said cyclic bar construction, as well as the action of Connes’
operator.

Resumé. Hovedemnet i denne afhandling er beregninger af algebraisk
K-teori ved brug af den cyklotomiske sporafbildning. Vi gør brug af det
framework for cyklotomiske spektra, udviklet af Nikolaus og Scholze, som
undgår brugen af genuin ækvivariant homotopiteori. Afhandlingen består
af en introduktion efterfulgt af to artikler.

Den første artikel beregner K-teorien af koordinatakserne i det affine
d-rum over perfekte legemer af positiv karakteristik. Dette generaliserer et
resultat af Hesselholt i tilfældet d = 2. Det tilsvarende resultat for legemer
af karakteristik nul blev fundet af Geller, Reid og Weibel i 1989. Vi udvider
også deres beregninger til glatte Q-algebraer.

I den anden artikel genbeviser vi en sætning, først bevist af Hessel-
holt og Madsen, af K-teorien for trunkerede polynomiumsalgebraer over
perfekte legemer af positiv karakteristik. Det oprindelige argument beror
på en forståelse af cykliske polytoper for dermed at bestemme den æk-
vivariante homotopitype af den cykliske barkonstruktion for en passende
monoid. Igennem Nikolaus og Scholzes framework opnår vi det samme
resultat ved kun af gøre brug af homologien af førnævnte cykliske barkon-
struktion, samt virkningen af Connes’ operator.
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Part 1

Introduction
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This thesis comprises two papers. Both of them are concerned with com-
puting algebraic K-theory using the cyclotomic trace map to topological
cyclic homology.

Paper A. On the K-theory of coordinate axes in affine space.

Paper B. On the K-theory of truncated polynomial algebras, revisited.

Apart from providing new computations of algebraic K-theory (in Paper
A) the main contribution of these papers is to show how to use the frame-
work of Nikolaus and Scholze [31] to compute topological cyclic homology
in the cases at hand. This framework removes the use of genuine equivari-
ant homotopy theory from the study of topological cyclic homology. In
Paper B I revisit a result due to Hesselholt and Madsen [18] using the
framework of [31] and substantially reduce the amount of work needed
to carry out the computation. In particular my calculation avoids the use
of genuine equivariant homotopy theory. I expect that this method may
be applied more generally to give new K-theory computations. Hesselholt
and Nikolaus [23] have work in progress which applies these methods to
give new calculations of the K-theory of planar cuspidal curves.

Before proceeding to the papers I wish to introduce the objects stud-
ied, give a short historical survey of the methods, and sketch the approach
which has been developed. This will take up most of the introductory
chapter. At the end I will describe some future perspectives and research
projects, arising from the work presented in these papers.

1. Algebraic K-theory and trace methods

Algebraic K-theory is a fundamental invariant. It connects and informs
a wide range of mathematical disciplines including such diverse subjects
as geometric topology and number theory. As an example of the latter,
suppose OF is the ring of integers in a number field F. The torsion sub-
groups of K0(OF) and K1(OF) are given by the ideal class group of OF and
the roots of unity µF in F, respectively. It follows from the class number
formula and the functional equation for ζF that

lim
s→0

s−rζF(s) = −R
#K0(OF)tors

#K1(OF)tors

where r is the rank of K1(OF) and R is the regulator of F. Lichtenbaum
conjectures [27] that the higher K-theory groups similarly determine other
special values of the zeta function ζF for many number fields F.

Algebraic K-theory functorially associates to a ring A a spectrum
K(A). The homotopy groups Kn(A) = πnK(A) are called the K-theory
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groups of A. The first three groups K0(A), K1(A) and K2(A) were intensly
studied in the 1950s and 1960s. They were defined purely algebraically.
Quillen constructed the full spectrum K(A) in the early 1970s [33]. He
also presented the first complete calculation of K∗(A), in the case where
A is a finite field [32].

With Quillen’s construction of the higher K-theory groups arose the
question of computing them. This turned out to be a very difficult problem
and for many years Quillen’s results for finite fields remained the only
known complete computations.

In mid 1970s Dennis constructed a map from K-theory to Hochschild
homology, thereby initiating a new approach to computing K-theory. Good-
willie [15] further refined this approach by factoring the Dennis trace map
through the negative version of cyclic homology. This led to several new
computations of rational K-theory. Indeed, Goodwillie [15] showed that,
rationally, the relative K-theory agrees with relative negative cyclic homol-
ogy for nilpotent extensions of rings.

With the development of topological cyclic homology TC, by Bökstedt-
Hsiang-Madsen [6] in the early 1990s it became possible to access the in-
tegral K-theory groups for certain rings. In op. cit. the authors show that
the Dennis trace map factors through the map from TC, to topological
Hochschild homology1 THH. The resulting natural transformation

trc : K −−−→ TC

is called the cyclotomic trace map. In [29] McCarthy, using the work of
Goodwillie, proves that for a surjective map of rings A→ Ā with nilpotent
kernel, the square

K(A) TC(A)

K(Ā) TC(Ā)

trc

trc

becomes homotopy cartesian after completion at any prime p. This re-
sult was later extended by Dundas [12] to the case of ring spectra. This
led to a flurry of comparison results between K-theory and TC. For ex-
ample Hesselholt and Madsen [21] used McCarthy’s result to show that
the cyclotomic trace K(A) → TC(A) becomes an equivalence after p-adic
completion when A is a finite algebra over the Witt vectors W(k) of a
perfect field of characteristic p > 0. Clausen, Mathew and Morrow [8]

1I will describe THH and TC in more detail below.



1. ALGEBRAIC K-THEORY AND TRACE METHODS 5

have recently extended the work of Dundas-Goodwillie-McCarthy, in the
commutative case, by providing comparison results for any henselian pair
(A, I).

One can restate McCarthy’s result in terms of the corresponding
relative theories. Given a surjective ring homomorphism f : A → Ā with
kernel I we call the fiber K(A, I) = hofib(K(A) → K(Ā)) the relative K-
theory of f . The same terminology applies to TC and all other spectrum-
valued functors defined on the category of rings. McCarthy’s theorem
says that the relative cyclotomic trace map

K(A, I)→ TC(A, I)

is an equivalence, after p-completion for any prime p.

1.1. Topological Hochschild homology. Topological Hochschild ho-
mology is a homology theory for associative algebras. It is defined in
analogy with the ordinary Hochschild homology, originally defined by
Hochschild in 1940s [24]. Let k be a commutative ring and A a unital
associative k-algebra. Assume for simplicity that A is flat as a k-module.
Consider the simplicial abelian group Bcy⊗(A/k)[−] with Bcy⊗(A/k)[n] =
A⊗n+1 where ⊗ = ⊗k and with structure maps

di(a0 ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an 0 ≤ i < n
ana0 ⊗ a1 ⊗ · · · ⊗ an−1 i = n

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an

We may additionally consider the cyclic permutation maps

tn(a0 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1

thus endowing Bcy(A/k)[−] with the structure of a cyclic object, in the
sense of Connes (see Loday [28] or [31, Appendix T] for more on cyclic
theory). We now define Hochschild homology

HH(A/k) = |Bcy⊗(A/k)[−]|

as the geometric realization of this simplicial object. The Hochschild ho-
mology groups are the homotopy groups of this space.

By Connes’ theory of cyclic objects, the Hochschild homology space
HH(A/k) admits an action of the group T of complex numbers of unit
modulus. Thus we may further define the cyclic homology, negative cyclic
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homology and periodic cyclic homology spaces,

HC(A/k) = HH(A/k)hT

HC−(A/k) = HH(A/k)hT

HP(A/k) = (Σ∞ HH(A/k))tT

by applying the homotopy orbits, homotopy fixed points, and T-Tate con-
struction, respectively. The T-Tate construction for a T-space X sits in a
cofiber sequence

XhT
can
−−−→ XtT −−−→ Σ2XhT

generalizaing the SBI-sequence from the Connes-Tsygan cyclic theory.
All three of the theories HC, HC−, and HP may also be defined in

terms of explicit bicomplexes. Hoyois [25] provides a proof that the def-
initions agree. In particular these invariants are calculable in terms of
homological algebra.

Topological Hochschild homology is, as the name suggests, a topo-
logical refinement of Hochschild homology. Bökstedt [4] was the first to
construct THH, following ideas of Goodwillie and Waldhausen and Breen
[7]. The original definition of THH in [4] was complicated by the lack of
good symmetric monoidal models of the stable homotopy category. Since
then the modern approaches allow for a straightforward definition using
the cyclic bar construction. We follow [31] for the construction. In particu-
lar we work with the symmetric monoidal∞-category of spectra, Sp with
smash product ⊗ = ⊗S and unit given by the sphere spectrum S. Given
an E1-algebra in spectra A, form the simplicial spectrum Bcy(A)[−] with

Bcy(A)[n] = A⊗n+1.

The spectrum THH(A) is by definition the geometric realization

THH(A) = |Bcy(A)[−]|.

As before this acquires a circle action so THH(A) is an object in the cate-
gory Fun(BT, Sp) of spectra with a T-action. In [op. cit. Theorem III.6.1.]
the authors show that this construction agrees with Bökstedt’s original
definition from [4].

Furthermore one may equip THH(A) with the structure of a cyclo-
tomic spectrum. In general for X a spectrum with T-action, a cyclotomic
structure on X is given by a T-equivariant “Frobenius” map

ϕp : X → XtCp
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for each prime p. The codomain XtCp carries a T/Cp-action which is iden-
tified with a T-action using the p’th power map ρ : T/Cp → T. If the
underlying spectrum X is p-complete then XtCl ' 0 for any prime l differ-
ent from p, so that it suffices to provide ϕp in order to give X a cyclotomic
structure. This is the case for example if X = THH(A) where A is an
Fp-algebra.

1.2. Topological cyclic homology. Given a spectrum X with a T-action
we define topological versions of negative cyclic and periodic cyclic ho-
mology using the same constructions as before

TC−(X) = XhT

TP(X) = XtT.

There is always a map from the homotopy orbits to the Tate construction

can : TC−(X)→ TP(X)

called the canonical map. If X is a p-complete bounded below cyclotomic
spectrum then the Frobenius map gives rise to another map

TC−(X) = XhT −−−→ (XtCp)h(T/Cp) ' XtT = TP(X)

which is again denoted by ϕp. We now define TC(X) by the fiber sequence

TC(X)→ TC−(X)
ϕp−can
−−−→ TP(X).

When X = THH(A) for a ring A we write TC(A) = TC(THH(A)), sim-
ilarly for TC− and TP. In [31] it is shown that TC(X) agrees with the
classical Bökstedt-Hsiang-Madsen construction of [6] when X is bounded
below. This is the case for example for THH of a connective ring spectrum
A.

2. TC of pointed monoid algebras

In their seminal paper on topological cyclic homology [6], Bökstedt, Hsiang
and Madsen study TC of spherical group rings S(Γ+), where Γ is a group.
They give a simple formula for TC(S(Γ+)) in terms of the free loop space
Map(S1, BΓ). Dropping the assumption that Γ has inverses, i.e. suppos-
ing it is a monoid, it is often the case that TC(S(Γ+)) is still amenable to
computations.

In both papers of this thesis I consider rings which are (pointed)
monoid algebras. A pointed monoid Π is a monoid object in the symmet-
ric monoidal category of pointed sets with monoidal structure given by
the smash product. Suppose k is some ring and A = k(Π) is the pointed
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monoid algebra of Π over k. What gets the TC computation off the ground
is the observation that there is a splitting

THH(k(Π)) ' THH(k)⊗ Bcy(Π)

of cyclotomic spectra. Here Bcy(Π) is the cyclic bar construction of Π. The
suspension spectrum Σ∞ Bcy(Π) is cyclotomic with Frobenius map which
factors over the homotopy T-fixed points. It arises from a space-level
“unstable Frobenius” ψp : Bcy(Π) → Bcy(Π)Cp arising from the diagonal
map ∆̃p : Π∧n → Π∧pn. At this point the specifics of Paper A and Paper
B differ, but the overall strategy is the same, as I will now explain. I
follow closely Paper B, which is notationally simpler, but the same ideas
are present in Paper A.

One starts by finding a T-equivariant splitting

Bcy(Π) '
∨

B(m)

with two key properties

(1) Each sub T-space B(m) has non-zero reduced homology in only
two consecutive degrees d(m) and d(m) + 1, depending on m and
with d(m)→∞ as m→∞.

(2) The unstable Frobenius ψp restricts to T-equivariant homeomor-
phisms ψp|B(m) : B(m)→ B(pm)Cp .

Property (1) implies that the Atiyah-Hirzebruch spectral sequence com-
puting π∗(THH(k)⊗ B(m)) degenerates allowing one to directly read off
these groups from the E2-page. This also uses the fundamental Bökstedt
periodicity

π∗ THH(k) = k[x] where |x| = 2

due to Bökstedt for k = Fp in [5] and extended to general perfectoid rings
in [3].

Property (2) allows sufficient understanding of the cyclotomic Frobe-
nius ϕp : THH(k(Π))→ THH(k(Π))tCp to conclude that its restriction

ϕp : THH(k)⊗ B(m) −−−→ (THH(k)⊗ B(pm))tCp

induces isomorphisms on homotopy groups in degrees ≥ d(m) + 1. One
can now determine TC−

∗ (THH(k)⊗ B(m)) and TP∗(THH(k)⊗ B(m)) using
the Tate spectral sequence

E2 = π∗(THH(k)⊗ B(m))⊗k k[t±1] ⇒ π∗ TP(THH(k)⊗ B(m))

and the homotopy T-fixed point spectral sequence

E2 = π∗(THH(k)⊗ B(m))⊗k k[t] ⇒ π∗ TC−(THH(k)⊗ B(m)).
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This is done by induction on m with the Frobenius (which induces an
isomorphism on high enough homotopy groups)

π∗ϕp : π∗ TC−(THH(k)⊗ B(m)) −−−→ π∗ TP(THH(k)⊗ B(pm))

providing the necessary input for the induction step. Here again one uses
the Bökstedt periodicity theorem in the form of the calculation

TP∗(k) = W(k)[t±1]

to express TC−
∗ (THH(k)⊗ B(m)) and TP∗(THH(k)⊗ B(pm)) in terms of

Witt vectors. By this point one has all the pieces needed in order to deter-
mine TC(k(Π)) using the fiber sequence

TC(k(Π)) −−−→ TC−(k(Π))
ϕp−can
−−−→ TP(k(Π))

from [31].

3. Paper A – On the K-theory of coordinate axes in affine space

This goal of this paper is to compute the K-theory of the rings

A2 = k[x, y]/(xy)

A3 = k[x, y, z]/(xy, xz, yz)

A4 = k[x, y, z, w]/(xy, xz, xw, yz, yw, zw)

. . .

For each dimension d ≥ 2 the ring Ad = k[x1, . . . , xd]/(xixj)i 6=j is the ring
of functions on the coordinate axes in affine d-space.

A2

y

x

A3

z

x

y

I take k to be a perfect field of characteristic p > 0. The main theorem
describes the K-groups of Ad relative to the ideal Id = (x1, . . . , xd) defining
the singular point at the origin. These relative K-groups are expressed in
terms of the p-typical Witt vectors Wt(k) of the field k. If, for example
k = Fp, then Wt(k) = Z/ptZ.

Suppose m ′ ≥ 2 and let tev = tev(p, r, m ′) be the unique positive
integer such that ptev−1m ′ ≤ 2r < ptev m ′, or zero if such tev does not exist.
Let tod = tod(p, r, m ′) be the unique positive integer such that ptod−1m ′ ≤
2r + 1 < ptod m ′, or zero if such tod does not exist. Let Jp denote the set of
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positive integers m ′ ≥ 2 which are coprime to p. The result is stated using
a function cycd(s), which counts the number of cyclic words of in d letters,
of length s, period s, having no cyclic repetitions. This function is studied
in an appendix to the paper.

Theorem 3.1. Let k be a perfect field of characteristic p > 0. Let Ad be the
ring k[x1, . . . , xd]/(xixj)i 6=j of coordinate axes, and let Id = (x1, . . . , xd). Then
if p > 2

Kq(Ad, Id) ∼=





∏
m ′∈Jp
even

∏
s ′ |m ′
even

∏
u≤tev

Wtev−u(k)⊕ cycd(pus ′) q = 2r
∏

m ′∈Jp
odd

∏
s ′ |m ′
odd

∏
u≤tod

Wtod−u(k)⊕ cycd(pus ′) q = 2r + 1

If p = 2 then

Kq(Ad, Id) ∼=





∏
m ′≥1

odd

∏
s ′ |m ′
∏

1≤u≤tev
Wtev−u(k)⊕ cycd(2

us ′) q = 2r
∏

m ′≥1
odd

∏
s ′ |m ′
∏

0≤v≤tev
k⊕ cycd(s

′) q = 2r + 1

The two-dimensional case of Theorem 3.1 is due to Hesselholt [19].
If q = 2 then the calculation is due to Dennis and Krusemeyer in 1979 [11].
In the analogous case of coordinate axes over fields k of characteristic zero
the K-theory was calculated by Geller, Reid, and Weibel in 1989. I extend
their calculation to the ind-smooth Q-algebras.

Theorem 3.2. Suppose k is an ind-smooth Q-algebra. For d ≥ 2 consider
the ring Ad = k[x1, . . . , xd]/(xixj)i 6=j, and let Id = (x1, . . . , xd). Then

Kq(Ad, Id) ∼= k⊕cd(q) ⊕ (Ω1
k/Q)

⊕cd(q−1) ⊕ · · · ⊕ (Ωq−2
k/Q

)⊕cd(2).

Here Ω∗k /Q is the algebraic de Rham complex and cd(q) is a counting
function closely related to the one appearing in Theorem 3.1. The proof
of Theorem 3.2 uses the result, due to Cortiñas [9], that the obstruction
to excision in rational K-theory and rational negative cyclic homology are
the same.

3.1. Sketch of proof. In this subsection I will sketch the proof of The-
orem 3.1. A salient feature of the rings Ad is the singularity at the origin

x = y = z = · · · = 0

Since K-theory of non-singular varieties is better understood, it is a good
idea to remove this singularity. This is quite simple using the normaliza-
tion map Ad → Bd where Bd = k[x1]× · · · × k[xd] is the disjoint union of d
lines.
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B3

z

x

y
z

x

y

A3

The K-theory of Bd is very simple using the homotopy invariance of K-
theory for regular rings. The result is that

K(Bd) ' K(k)×d

It remains to figure out how K-theory interacts with “gluing at the origin”
as encoded in the normalization map Ad → Bd. This is an example of the
excision problem in K-theory. More generally, given a ring homomorphism
f : A → B which maps an ideal I ⊆ A isomorphically to an ideal f (I) ∼=

I ⊆ B one obtains a pullback diagram of rings

A A/I

B B/I

f

The excision problem asks whether the associated diagram induced on
K-theory

K(A) K(A/I)

K(B) K(B/I)

is a pullback diagram in spectra. This is not true in general. However, the
discrepancy for it to be true for K-theory agrees with the discrepancy for
it to be true for TC. More precisely, in analogy with the result by Cortiñas
[9], Geisser and Hesselholt [14] show that the cyclotomic trace between the
bi-relative K-theory and bi-relative TC

Kq(A, B, I, Z/pν) −−−→ TCq(A, B, I; p, Z/pν)

is an isomorphism on homotopy groups with Z/pνZ coefficients. Return-
ing to the rings Ad and Bd we may now translate the K-theory problem into
a TC-problem. The result is that Theorem 3.1 follows from the following
theorem.
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Theorem 3.3. Let k be a perfect field of characteristic p > 0. Let Ad be
the ring k[x1, . . . , xd]/(xixj)i 6=j of coordinate axes, Bd = k[x1]× · · · × k[xd] and
let Id = (x1, . . . , xd). Then if p > 2

TCq(Ad, Bd, Id) ∼=





∏
m ′∈Jp
even

∏
s ′ |m ′
even

∏
u≤tev

Wtev−u(k)⊕ cycd(pus ′) q = 2r
∏

m ′∈Jp
odd

∏
s ′ |m ′
∏

u≤tod
Wtod−u(k)⊕ cycd(pus ′) q = 2r+1

If p = 2 then

TCq(Ad, Bd, Id) ∼=





∏
m ′≥1

odd

∏
s ′ |m ′
∏

1≤u≤tev
Wtev−u(k)⊕ cycd(2

us ′) q = 2r
∏

m ′≥1
odd

∏
s ′ |m ′
∏

0≤v≤tev
k⊕ cycd(s

′) q = 2r+1.

To prove this I apply the method sketched above in Section 2 using
the monoid Πd = {0, 1, x1, x2

1, . . . , x2, x2
2, . . . , xd, x2

d, . . . } . The required split-
ting of Bcy(Πd) is achieved through the use of cyclic words without cyclic
repetitions. The function cycd(s) counts such words.

4. Paper B – On the K-theory of truncated polynomial algebras,
revisited

In this paper I compute the K-theory of truncated polynomial algebras

A = k[x]/(xe), e ≥ 2

over perfect fields k of positive characteristic. This was done already in
the mid 1990s by Hesselholt and Madsen [20], and the aim of Paper B is to
display the strength of the new approach to cyclotomic spectra from [31].
Indeed using the method sketched in Section 2 it is possible to substan-
tially reduce the difficulty of this computation.

Theorem 4.1 ([20]). Let k be a perfect field of positive characteristic. Then
there is an isomorphism

K2r−1(k[x]/(xe), (x)) 'Wre(k)/VeWr(k)

and the groups in even degrees are zero.

To give a sense of the intricacies inherent in the original proof I will
briefly sketch the ideas involved. The ring A is a pointed monoid algebra
on the monoid Πe = {0, 1, x, . . . , xe−1} determined by xe = 0. In [20] the
authors consider the T-equivariant splitting

Bcy(Πe) '
∨

m≥0

B(m)

where B(m) is the geometric realization of the sub-cyclic set generated by
the m − 1-simplex x ∧ · · ·∧ x with m factors. In order to compute TC(A)
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they determine the T-equivariant homotopy type of the spaces B(m). This
turns out to be difficult task. Indeed, it is fairly simple to obtain an equi-
variant homeomorphism

B(m) ∼= T+ ∧Cm (∆m−1/Cm · ∆m−e)

where Cm acts on ∆m−1 by permuting the vertices, and where ∆m−e is
the face spanned by the first m − e + 1 vertices. In order to determine
the T-equivariant homotopy type of T+∧Cm (∆m−1/Cm ·∆m−e) the authors
investigate the facet structure of regular cyclic polytopes. The regular
cyclic m-polytope Pm,d in 2d-space is defined as the convex hull in R2d of
the m points x(2π j/m), (for j = 0, . . . , m− 1) on the trigonometric moment
curve

x(t) = (cos t, sin t, cos2t, sin2t, . . . , cos dt, sin dt) ∈ R2d.

Gale’s evenness criterion [13] (known by Carathéodory already in 1911!)
states that a facet of Pm,d is given by the convex hull of the d points
xi1 , xi1+1, . . . , xid , xid+1. The regular Cm-representation RCm has a projec-
tion

πd : RCm → λd

whenever2 d ≤ bm−1
2 c. Under this projection, πd(∆m−1) = Pm,d and one

lets Qm,d = πd(Cm · ∆m−e). In [20, Theorem 3.1.2] the authors use Gale’s
evenness criterion to show that 0 /∈ Qm,d and ∂Pm,d ⊆ Qm,d whenever
de < m < (d + 1)e (the case where m = (d + 1)e is similar but a bit more
complicated). This allows them to consider the radial projection away
from 0 to get a Cm-equivariant map

∆m−1/(Cm · ∆m−e)
πd
−−−→ Pm,d/Qm,d

r
−−−→ Pm,d/∂Pm,d = Sλd

Now the authors show that the resulting map

T+ ∧Cm ∆m−1/(Cm · ∆m−e) −−−→ T+ ∧Cm Sλd

is a homotopy equivalence. With this at hand the methods of [21] now
apply.

I show in Paper B how one can make do with only the reduced ho-
mology of the spaces B(m), together with the action of Connes’ operator.
Determining this is much easier than computing the homotopy type, since
the reduced homology of Bcy(Πe) is the Hochschild homology of the k-
algebra A, which is known by work of the Buenos Aires cyclic homology
group [16]. One may then read off the homology of the sub-spaces from
a corresponding splitting of the Hochschild homology. From here one

2See Lemma 3.4. of Paper A for notation and a proof



14

follows the strategy outlined in Section 2. In particular this avoids any
recourse to the theory of cyclic polytopes.

5. Future perspectives

The work done in Papers A and B suggests several exciting research prob-
lems. There are at least two different types of questions that I believe are
both interesting and accessible.

Firstly, it would be very interesting to use these methods to make
new computations in K-theory. The literature on Hochschild and cyclic
homology abounds with computations, [17, 26, 30, 34], though most com-
putations are only carried out in the characteristic zero context. Two con-
crete examples that I have in mind are the following. Let k be a perfect
field of characteristic p > 0.

(1) Let 1 ≤ r ≤ d and consider the ring A = k[x1, . . . , xd]/(x1 . . . xr)

defining an intersection of coordinate hyperplanes in affine d-
space over k. This is the local form for a strict normal crossings
divisor, so computing K(A) could yield applications to algebraic
geometry.

(2) The K-theory of the cone z2 = xy was computed in [10, Theorem
4.3.] when the base ring is a field of characteristic zero. The result
is quite similar to that of Theorem 3.2 above, suggesting that the
methods we develop could be used to make similar computations
in the positive characteristic case.

A second direction for future work consists in extending the results of
Papers A and B. In particular I would like to study the extent to which
the assumptions on the base ring k may be relaxed. There are at least two
plausible directions here.

(1) In [2] the authors make partial computations of the K-theory of
truncated polynomial algebras over the integers. The same is
done in [1] for the case A2 of coordinate axes in two variables.
It seems likely that the methods of op. cit. should be applicable
also to higher dimensions Ad = Z[x1, . . . , xd]/(xixj)i 6=j.

(2) Sticking to the case of Fp-algebras a clear deficiency of the method
outlined in Section 2 is the reliance on the assumption that k is
a perfect field. Using the classical approach to TC, Hesselholt-
Madsen [22] extend their methods to the case of regular Fp-algebras,
a huge leap of generality. They express their results in terms of the
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de Rham-Witt complex. This should be extended to the Nikolaus-
Scholze setup, and potentially requires the use results of from [3].
A first step would be to generalize the computations for general
perfectoid rings. Indeed, the authors of op. cit. generalize Bökst-
edt periodicity to this setting, indicating that such a generalization
should be possible.
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Paper A





ON THE K-THEORY OF COORDINATE AXES IN AFFINE SPACE

MARTIN SPEIRS

1. Introduction

Let k be a perfect field of characteristic p > 0 and let Ad denote the k-
algebra k[x1, . . . , xd]/(xixj)i 6=j, which is the coordinate ring of the coor-
dinate (x1, . . . , xd)-axes in affine d-space Ad = Spec(k[x1, . . . , xd]) over k.
This is an affine curve with a singularity at the origin, the singularity being
defined by the ideal Id = (x1, . . . , xd). Our main result is the computation
of the relative algebraic K-theory, K(Ad, Id) of the pair (Ad, Id). The rela-
tive K-theory is defined to be the mapping fiber of the map K(Ad)→ K(k)
induced by the projection onto k = Ad/Id.

To state the result we introduce some notation. We consider words
in d letters x1, . . . , xd, i.e. a finite string ω = w1w2 . . . wm where each wi

is one of the letters x1, . . . , xd. A word ω = w1w2 . . . wm has no cyclic
repetitions if wi 6= wi+1 for all i = 1, . . . , m − 1 and if wm 6= w1. For d ≥ 1
and s ≥ 1 let cycd(s) denote the number of cyclic words in d letters, of
length s, period s, having no cyclic repetitions. In Section 7 we give a
formula for cycd(s). Suppose m ′ ≥ 2 and let tev = tev(p, r, m ′) be the
unique positive integer such that ptev−1m ′ ≤ 2r < ptev m ′, or zero if such tev

does not exist. Let tod = tod(p, r, m ′) be the unique positive integer such
that ptod−1m ′ ≤ 2r + 1 < ptod m ′, or zero if such tod does not exist. Let Jp

denote the set of positive integers m ′ ≥ 2 which are coprime to p.

Theorem 1.1. Let k be a perfect field of characteristic p > 0. Let Ad be the
ring k[x1, . . . , xd]/(xixj)i 6=j of coordinate axes, and let Id = (x1, . . . , xd). Then
if p > 2

Kq(Ad, Id) ∼=





∏
m ′∈Jp
even

∏
s ′ |m ′
even

∏
u≤tev

Wtev−u(k)⊕ cycd(pus ′) q = 2r
∏

m ′∈Jp
odd

∏
s ′ |m ′
∏

u≤tod
Wtod−u(k)⊕ cycd(pus ′) q = 2r + 1

1
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If p = 2 then

Kq(Ad, Id) ∼=





∏
m ′≥1

odd

∏
s ′ |m ′
∏

1≤u≤tev
Wtev−u(k)⊕ cycd(2

us ′) q = 2r
∏

m ′≥1
odd

∏
s ′ |m ′
∏

0≤v≤tev
k⊕ cycd(s

′) q = 2r + 1

In both cases tev = tev(p, r, m ′) and tod = tod(p, r, m ′) are as defined above.

Note that the products appearing in the statement are all finite since
for m ′ large enough tev = tod = 0.

The result extends the calculation by Dennis and Krusemeyer when
q = 2, [5, Theorem 4.9]. Hesselholt carried out the computation in the
case d = 2 in [13]. Our strategy follows the one in [13], except that we
use the framework for TC set up by Nikolaus and Scholze [20] to which
we refer for background on TC and cyclotomic spectra. The computation
is achieved through the use of the cyclotomic trace map from K-theory
to topological cyclic homology, TC. See also [14] for background on cy-
clotomic spectra and for similar calculations. Recently, Hesselholt and
Nikolaus [16] have completed a calculation for K-theory of cuspidal curves
using similar methods as this paper.

1.1. Overview. In Section 2 we reduce the K-theory computation to a TC
computation. Section 3 carries out the requisite THH computation. Then
Section 4 and Section 5 assemble this to complete the proof. Section 4
contains a new method for computing TP, which makes crucial use of the
Nikolaus-Scholze framework, see also [16]. In Section 6 we consider the
characteristic zero situation and extend the computation of [8, Theorem
7.1.]. Finally in Section 7 we derived the necessary counting formula for
cyclic words.

1.2. Acknowledgements. I am grateful to my advisor Lars Hesselholt for
his guidance and support during the production of this paper. Special
thanks are due to Fabien Pazuki for encouraging and useful conversations.
I thank Benjamin Böhme, Ryo Horiuchi, Joshua Hunt, Mikala Jansen,
Manuel Krannich, and Malte Leip for several useful conversations. It is
a pleasure to thank Malte Leip for carefully reading a draft version of this
paper and providing several corrections and suggestions.
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2. Bi-relative K-theory and topological cyclic homology

The normalization of Ad is just d disjoint lines, whose coordinate ring is

Bd = k[x1]× · · · × k[xd].

Gluing these lines together at x1 = x2 = · · · = xd = 0 one obtains
Spec(Ad). Algebraically this is the statement that the following square
is a pullback of rings

Ad k

Bd k×d

Here the horizontal maps take the variables xi to zero. The left-vertical
map is the normalization map. It maps xi to (0, . . . , xi . . . , 0) where xi is
in the i’th position. The right-vertical map is the diagonal. If K-theory
preserved pullbacks then the diagram would give a computation of K(Ad)

in terms of K(Bd) and K(k). Using the fundamental theorem of K-theory
(since k is regular) one would get a formula for K(Ad) purely in terms of
K(k). But K-theory does not preserve pullbacks. However, there is still
something to be done. We can form the bi-relative K-theory, K(Ad, Bd, Id)

as the iterated mapping fiber of the diagram

K(Ad) K(k)

K(Bd) K(k×d)

Again, if K-theory preserved pullbacks then K(Ad, Bd, Id) would be trivial,
but (as we shall see) it is not. Since k is regular the fundamental theorem of
algebraic K-theory [21, Section 6], and the fact that K-theory does preserve
products, shows that the canonical map

K(Ad, Bd, Id) −−−→ K(Ad, Id)

is an equivalence. Here K(Ad, Id) is the relative K-theory spectrum, i.e. the
mapping fiber of the map K(Ad) → K(Ad/Id) induced by the quotient.
Any splitting of the quotient map Ad → Ad/Id provides a splitting of
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K-groups

Kq(Ad) ∼= Kq(k)⊕ Kq(Ad, Id).

So if we can compute Kq(Ad, Id) = Kq(Ad, Bd, Id) we have a computation
of Kq(Ad). This is what we will do.

Geisser and Hesselholt [6] have shown that the cyclotomic trace in-
duces an isomorphism

Kq(A, B, I, Z/pν)
∼

−−−→ TCq(A, B, I; p, Z/pν)

between the bi-relative K-theory and the bi-relative topological cyclic ho-
mology, when both a considered with Z/pv coefficients. The correspond-
ing statement with rational coefficients (using Connes-Tsygan negative
cyclic homology and the Chern character) was proven by Cortiñas in [3].

In fact it suffices to compute TC(Ad, Bd, Id, p;Zp) since the trace map

K(A, B, I)→ TC(A, B, I, p;Zp)

is an equivalence whenever p is nilpotent in A, as shown in [7, Theorem
C]. Furthermore, since THH(Ad, Bd, Id; p) is an Hk-module, it is in particu-
lar p-complete, and so TC(A, B, I, p;Zp) ' TC(A, B, I, p) (see [20, Section
II.4]). Thus, to prove Theorem 1.1 it suffices to prove the following result.

Theorem 2.1. Let k be a perfect field of characteristic p > 0. Let Ad be the
ring k[x1, . . . , xd]/(xixj)i 6=j of coordinate axes, Bd = k[x1]× · · · × k[xd] and let
Id = (x1, . . . , xd). Then if p > 2

TCq(Ad, Bd, Id) ∼=





∏
m ′∈Jp
even

∏
s ′ |m ′
even

∏
u≤tev

Wtev−u(k)⊕ cycd(pus ′) q = 2r
∏

m ′∈Jp
odd

∏
s ′ |m ′
∏

u≤tod
Wtod−u(k)⊕ cycd(pus ′) q = 2r+1

If p = 2 then

TCq(Ad, Bd, Id) ∼=





∏
m ′≥1

odd

∏
s ′ |m ′
∏

1≤u≤tev
Wtev−u(k)⊕ cycd(2

us ′) q = 2r
∏

m ′≥1
odd

∏
s ′ |m ′
∏

0≤v≤tev
k⊕ cycd(s

′) q = 2r+1.

3. THH and the cyclic bar construction

The spectrum TC(Ad, Bd, Id) is defined using topological Hochschild ho-
mology, so that is where we start. In this section we drop the subscript d,
so that A = Ad , B = Bd and I = Id. The bi-relative topological Hochschild
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homology is the spectrum THH(A, B, I) defined as the iterated mapping
fiber of the following diagram.

(1)

THH(A) THH(A/I)

THH(B) THH(B/I)

The ring A is a pointed monoid ring and, by Lemma 3.1 below,
we may compute THH(A) in terms of the cyclic bar construction of the
defining pointed monoid.

3.1. Unstable cyclotomic structure on the cyclic bar construction. Let Π
be a pointed monoid, that is a monoid object in the symmetric monoidal
category of based spaces and smash product. The cyclic bar construction
of Π is the cyclic space Bcy(Π)[−] with

Bcy(Π)[k] = Π∧(k+1)

and with the usual Hochschild-type structure maps.

di(π0 ∧ · · ·∧ πm) =

{
π0 ∧ · · ·∧ πiπi+1 ∧ · · ·∧ πm 0 ≤ i < m
πmπ0 ∧ π1 ∧ · · ·∧ πm−1 i = m

si(π0 ∧ · · ·∧ πm) = π0 ∧ · · ·∧ πi ∧ 1 ∧ πi+1 ∧ · · ·∧ πm

tm(π0 ∧ · · ·∧ πm) = πm ∧ π0 ∧ · · ·∧ πm−1

We write Bcy(Π) for the geometric realization of Bcy(Π)[−]. It is
a space with T-action where T is the circle group (for a proof see for
example [19, Theorem 7.1.4.]). Furthermore it is an unstable cyclotomic
space, i.e. there is a map

ψp : Bcy(Π)→ Bcy(Π)Cp

which is equivariant when the domain is given the natural T/Cp-action.
This map goes back to [2] section 2. We briefly sketch the construction.
The Cp-action on Bcy(Π) is not simplicial, but we can make it so by using
the edge-wise subdivision functor sdp : ∆→ ∆ which is given by the p-fold
concatenation, sdp[m− 1] = [m− 1]q · · ·q [m− 1] and sdp(θ) = θq · · ·q θ

for morphisms θ : [m − 1] → [n − 1]. Given a simplicial set X[−] we
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let sdp X[−] = X[−] ◦ sdop
p . For the topological simplex ∆m−1 ⊂ Rm let

dp : ∆m−1 → ∆pm−1 be the diagonal embedding

dp(z) =
1
p

z⊕ · · · ⊕ 1
p

z.

This induces a (non-simplicial) map on geometric realization

Dp : |(sdp X)[−]|→ |X[−]|

by id × dp : X[pm − 1] × ∆m−1 → X[pm − 1] × ∆pm−1. Then [2, Lemma
1.1.] shows that Dp is a homeomorphism – one need only check on the
representables ∆k[−] where it follows by explicit calculations. In the case
X[−] = Bcy(Π)[−] one has available the simplicial diagonal

∆̃p : Bcy(Π)[−]→ sdp Bcy(Π)[−]

given by

−→π = π0 ∧ · · ·∧ πm 7−→ −→π ∧ · · ·∧−→π (p copies)

It clearly lands in the Cp-fixed points of sdp Bcy(Π)[−] and induces an
isomorphism ∆̃p : Bcy(Π)[−]→ sdp Bcy(Π)[−]Cp . We define

ψp : Bcy(Π)→ Bcy(Π)Cp

to be the composite

Bcy(Π) = |Bcy(Π)[−]|
∆̃p

−−−→
∼=

| sdp Bcy(Π)[−]Cp |

−−−→
∼=

| sdp Bcy(Π)[−]|Cp

Dp

−−−→
∼=

|Bcy(Π)[−]|Cp = Bcy(Π)Cp

where the middle map is the canonical equivalence witnessing the fact
that geometric realization commutes with finite limits.

Passing to suspension spectra now gives us a cyclotomic structure on
THH(S(Π)) where S(Π) = Σ∞ Bcy(Π). Indeed, there is always a T/Cp-
equivariant map Bcy(Π)Cp → Bcy(Π)hCp . Composing with this map gives
a T ' T/Cp-equivariant map ψh : Bcy(Π)→ Bcy(Π)hCp . Thus, we obtain a
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T ' T/Cp-equivariant map

THH(S(Π)) = Σ∞ Bcy(Π)
ψh

−−−→ Σ∞ Bcy(Π)hCp

−−−→ (Σ∞ Bcy(Π))hCp

can
−−−→ (Σ∞ Bcy(Π))tCp = THH(S(Π))tCp

where the middle map is the canonical map from the suspension spectrum
of a homotopy limit, to the homotopy limit of the suspension spectrum
and the last map is the canonical map from the homotopy fixed points to
the Tate construction.

3.2. THH of monoid algebras. Both of the algebras A and B (and their
quotients by I) are pointed monoid algebras, enabling us to use the fol-
lowing splitting result.

Lemma 3.1. [14, Theorem 5.1.] Let k be a ring, Π a pointed monoid, and
k(Π) the pointed monoid algebra. Let Bcy(Π) be the cyclic bar-construction on
Π. Then there is a T-equivariant equivalence

THH(k)⊗ Bcy(Π)
∼→ THH(k(Π)).

Under this equivalence, the Frobenius on THH(k(Π)) is identified with the tensor
product of the Frobenius on THH(k) with the one on THH(S(Π)).

Proof. Since THH is symmetric monoidal [20, Section IV.2.] we obtain

THH(k(Π)) = THH(k⊗ S(Π)) ' THH(k)⊗ THH(S(Π)).

Since THH(S(Π)) = S(Bcy(Π)) we obtain

THH(k(Π)) ' THH(k)⊗ S(Bcy(Π))

as claimed. �

Let Πd = {0, 1, x1, x2
1, . . . , x2, x2

2, . . . , xd, x2
d, . . . } be the multiplicative

monoid with base-point 0 and multiplication determined by xixj = 0 when
i 6= j. Then Ad

∼= k(Πd). Let Π1 = {0, 1, t, t2, . . . } and Π0 = {0, 1}, so
B = k(Π1)× · · · × k(Π1) (with d products) and k = k(Π0). The diagram
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of cyclotomic spectra (1) is induced by the diagram of pointed monoids

(2)

Πd Π0

Π1 × · · · ×Π1 Π0 × · · · ×Π0

ε

(ϕ1, ..., ϕd) ∆

ε×d

The map ϕj takes xi and to 0 when i 6= j and takes xj to t. The map ε takes
the variables x1, . . . , xd and t to 0. The map ∆ is the diagonal.

The cyclic bar-construction sometimes decomposes, as a pointed T-
space, into a wedge of spaces simple enough that one can understand
their T-homotopy type. To do this for Bcy(Πd) we need the notion of
cyclic words.

We consider the alphabet S = {x1, . . . , xd} and words

ω : {1, 2, . . . , m}→ S.

Here m is the length of ω. The cyclic group Cm acts on the set of words of
length m. An orbit for this action is called a cyclic word. Such a cyclic word
ω has a period namely the cardinality of the orbit. Words may be concate-
nated to give new, longer words, though concatenation is not well-defined
for cyclic words. The empty word ∅ → S is the unit for concatenation. It
has length 0 and period 1.

We can associate words to non-zero elements of Bcy(Πd)[m] as fol-
lows. If π ∈ Πd = Bcy(Πd)[0] is non-zero then it is of the form π = xl

j for
some 1 ≤ j ≤ d and l ≥ 0. Let ω(π) be the unique word of length l all of
whose letters are xj. For example ω(x2

1) = x1x1 and ω(1) = ∅. Now for a
non-zero element π0 ∧ · · ·∧ πm ∈ Bcy(Πd)[m] we let

ω(π0 ∧ · · ·∧ πm) = ω(π0) ? · · · ? ω(πm)

be the concatenation of each of the words ω(πj). Note that ω(1) is the
empty word, which is the unit for concatenation. For a cyclic word ω we
define

Bcy(Πd, ω)[m] ⊆ Bcy(Πd)[m]

to be the subset consisting of the base-point and all elements π0 ∧ · · ·∧πm

such that

ω(π0 ∧ · · ·∧ πm) ∈ ω.
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The cyclic structure maps preserve this property and so, as m ≥ 0 varies,
this defines a cyclic subset

Bcy(Πd, ω)[−] ⊆ Bcy(Πd)[−].

Denote by Bcy(Πd, ω) the geometric realization of this subset. We will also
often abbreviate B(ω) = Bcy(Πb, ω). As ω ranges over all cyclic words
every non-zero m-simplex π0 ∧ · · ·∧πm appears in exactly one such cyclic
subset Bcy(Πd, ω). Thus we get a decomposition

Bcy(Πd) =
∨

Bcy(Πd, ω)

indexed on the set of all cyclic words with letters in S = {x1, . . . , xd}.

Lemma 3.2. There is a canonical T-equivariant equivalence
⊕

THH(k)⊗ Bcy(Πd, ω)
∼→ THH(A, B, I)

where the sum on the left-hand side is indexed over all cyclic words whose period
is ≥ 2.

Proof. We consider the diagram induced from (1) using Lemma 3.1,

(3)

THH(k)⊗ Bcy(Πd) THH(k)⊗ Bcy(Π0)

(THH(k)⊗ Bcy(Π1))×d (THH(k)⊗ Bcy(Π0))×d

ε

(ϕ1, ..., ϕd) ∆

ε×d

THH(A, B, I) is the iterated mapping fiber of this diagram. The mapping
fiber of the left-hand vertical map consists of two parts; the part of the
wedge sum indexed on cyclic words containing at least two different let-
ters from S and a part on which ε is an equivalence. The map ε is trivial on
this part indexed on cyclic words containing at least two different letters,
finishing the claim. �

3.3. Homotopy type of Bcy(Πd;ω). In this section we determine the ho-
motopy type of the subspaces Bcy(Πd, ω) ⊆ Bcy(Πd).

Definition 3.1. We say that a word ω = w1w2 . . . wm has no cyclic repetitions
if wi 6= wi+1 for all i = 0, 1, . . . , m − 1 and if wm 6= w1. If on the other hand
this is not satisfied, we say ω (or ω) has cyclic repetitions.
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Lemma 3.3. Let ω be a cyclic word of period s ≥ 2, with letters in the alphabet
S = {x1, . . . , xd}. The homotopy type of the pointed T-space Bcy(Πd, ω) is given
as follows.

(1) If ω has length m = si and has no cyclic repetitions then a choice of
representative word ω ∈ ω determines a T-equivariant homeomorphism

SR[Cm]−1 ∧Ci T+
∼→ Bcy(Πd, ω),

where R[Cm]− 1 is the reduced regular representation of Cm.
(2) If ω has cyclic repetitions, then Bcy(Πd, ω) is T-equivariantly contractible.

Proof. This proof follows closely that of [13, Lemma 1.6]. Choose ω ∈ ω

and let (π0, . . . , πm−1) be the unique m-tuple of non-zero elements in Πd

such that ω(π0 ∧ · · ·∧ πm−1) = ω. The pointed cyclic set Bcy(Πd, ω)[−] is
generated by the (m − 1)-simplex π0 ∧ · · ·∧ πm−1 and so by the Yoneda
lemma there is a unique surjective map of pointed cyclic sets

fω : Λm−1[−]→ Bcy(Πd, ω)[−]

mapping the generator of Λm−1[−] to the generator π0 ∧ · · ·∧ πm−1. Since
ω has period s, the generator π0 ∧ · · ·∧πm−1 is fixed by the cyclic operator
ts
m and so fω factors over the quotient subgroup of order i = m/s,

fω : (Λm−1[−]/Ci)→ Bcy(Πd, ω)[−].

From [14, Section 7.2.] we have a T-equivariant homeomorphism

|Λm−1[−]|
∼→ ∆m−1 ×T

(where T acts on the second factor) where the dual cyclic operator acts
on ∆m−1 by the affine map that cyclicly permutes the vertices and on T

by rotation through 2π/m. Thus fω gives a continuous T-equivariant
surjection

fω : (∆m−1 ×Ci T)+ → Bcy(Πd, ω).

If ω has no cyclic repetitions then all the faces of the generator

π0 ∧ · · ·∧ πm−1

are the base point 0, and so fω collapses the entire boundary ∂∆m−1 of
∆m−1 to the base-point. There are no other relations, and so we have a
T-equivariant homeomorphism

fω : (∆m−1/∂∆m−1)∧Ci T+
∼→ Bcy(Πd, ω).
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Now we use the identification of the Cm-space ∆m−1/∂∆m−1 with the one-
point compactification of the reduced regular representation to finish the
proof of part (1).

In case ω does have a cyclic repetition, then π0 ∧ · · ·∧πm−1 will have
a non-base point face. So fω collapses at least one codimension 1 face
(and its T-orbit) to the base-point, and leaves at least one codimension 1
face, say F ⊆ ∆m−1, un-collapsed. The cone on F is canonically homeo-
morphic to ∆m−1 and has a canonical null-homotopy given by shrinking
down to the basepoint of the cone. This null-homotopy then induces a
null-homotopy on Bcy(Πd, ω). However it may not be a T-equivariant
null-homotopy. To get this we note that there is a Ci-equivariant homeo-
morphism

∆s−1 ∗ · · · ∗ ∆s−1 → ∆m−1

where Ci acts on the left by cyclically permuting the factors of the join.
Again fω will collapse at least one codimension 1 face of ∆s−1 and leave at
least one un-collapsed, say F ⊆ ∆s−1. Now the null-homotopy of cone(F)
will induce a T-equivariant null-homotopy

Bcy(Πd, ω)∧ [0, 1]+ → Bcy(Πd, ω).

This completes the proof. �

Let C(i) denote the 1-dimensional complex T-representation where
z ∈ T ⊆ C acts through multiplication with the i’th power zi. For i ≥ 1 let
λi = C(1)⊕ · · · ⊕C(i).

Lemma 3.4. The regular representation R[Cm] is isomorphic to R⊕ λ m−2
2
⊕R−

if m is even, and R⊕ λ m−1
2

if m is odd.

Proof. By Maschke’s theorem R[Cm] is a semisimple ring. In particular
it decomposes as a sum of irreducible sub-representations. Furthermore
it contains a copy of every irreducible Cm-representation (since for any
such V and any non-zero v ∈ V, there is a surjection R[Cm] → V given
by
∑

λgg 7→ ∑λggv so, by semisimplicity, V embeds into R[Cm]). Since
R and C(i), for 1 ≤ i ≤ bm−1

2 c, (and R− in case m is even) are irre-
ducible, pair-wise non-isomorphic, and have real dimensions summing to
dimR R[Cm] = m this completes the proof. �

Lemma 3.5. Let ω be a cyclic word with no cyclic repetitions, of length m, period
s and with i = m/s blocks.
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(1) If s is even, then there is a T-equivariant homeomorphism

ΣB(ω) ' Sλm/2 ⊗ (T/Ci)+

(2) If both s and i are odd, then there is a T-equivariant homeomorphism

B(ω) ' Sλ(m−1)/2 ⊗ (T/Ci)+

(3) If s is odd, and i is even, then there is a T-equivariant homeomorphism

B(ω) ' Sλ(m−2)/2 ⊗RP2(i)

where RP2(i) is by definition the mapping cone of the quotient map
T/Ci/2+ → T/Ci+.

Proof. We use Lemma 3.4 in each case.

(1) If s = 2k is even then so is m and so

R[Cm]− 1 ∼= λ(m−2)/2 ⊕R−.

The restriction along the inclusion Ci ⊆ Cm (given by σi 7→ σs
m

where σj is a generator) turns the sign representation R− into a triv-
ial representation. Since C(m

2 ) = C(ki) = R⊕R as Ci-representations,
we have

SR[Cm]−1 ∧Ci T+
∼= S−1 ∧ Sλm/2 ∧Ci T+

∼= S−1 ∧ Sλm/2 ∧ (T/Ci)+

where the last isomorphism uses that λm/2 extends to a repre-
sentation of T and so allows the T-equivariant untwisting map
(x, z) 7→ (xz, zCi).

(2) If both s and i are odd then so is m = si and so

R[Cm]− 1 = λ(m−1)/2.

Then we proceed as above, using the untwisting map.
(3) If s is odd and i is even, then m is even and so

R[Cm]− 1 = λ(m−2)/2 ⊕R−.

The restriction along the inclusion Ci ⊆ Cm leaves the sign repre-
sentation unchanged. Now repeat the argument of [14, Cor. 7.2.].

�
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3.4. Homology of Bcy(Πd;ω).

Proposition 3.6. Let R be any commutative ring. Let ω be a cyclic word with
no cyclic repetitions, of length m, period s and with i = m/s blocks. The singular
homology H̃∗(B(ω); R) is concentrated in degrees m − 1 and m. If either s is
even, or both s and i are odd, then the R-modules in degree m − 1 and m are
free of rank 1. If s is odd and i is even, then the R-module in degree m − 1 is
isomorphic to R/2R, and the R-module in degree m is isomorphic to 2R.

Furthermore, when m and s have the same parity, Connes’ operator takes
a generator yω of the R-module H̃m−1(B(ω); R) to i times a generator zω of
H̃m(B(ω); R), that is d(yω) = izω. When s is odd and i is even, Connes’
operator acts trivially.

Proof. The homology computations follow directly from Lemma 3.5. We
also deduce the behaviour of Connes’ operator from Lemma 3.5. In general
for a pointed T-space X, Connes’ operator d : H̃∗(X; k) → H̃∗+1(K; k) is
given by taking the cross-product with the fundamental class [T] and then
applying the map induced by the action µ : T+ ∧ X → X on reduced
homology. We consider two cases.

(1) When X = T/Ci+ we claim that d : H̃0(X; k) → H̃1(X; k) is mul-
tiplication by i (up to a unit). This follows from the fact that the
map

S1 → T×T/Ci → T/Ci

is a degree i map.
(2) When X = RP2(i) we claim that d : H̃1(X; k) → H̃2(X; k) is trivial.

Consider the diagram

T+ ∧ (T/Ci)+ (T/Ci)+

T+ ∧ RP2(i) RP2(i)

id∧q q

Now H1((T/Ci)+) surjects onto H1(RP2(i)) and the above dia-
gram commutes. Since H2((T/Ci)+) = 0 the claim follows.

�

Remark 3.1. From this proposition we see that if the characteristic of k is
different 2 then H̃∗(B(ω; k) is trivial when s is odd and i is even. On the
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other hand, if k has characteristic 2 then k/2k = 2k = k. This explains why
the combinatorics of Geller, Reid, and Weibel in [8], avoids cyclic words
whose period is not congruent (mod 2) to the length, [8, Remark 3.9.1.],
since they work over characteristic zero fields.

3.5. THH of the coordinate axes. We put together the various results of
the previous sections to describe THH(A, B, I) as a cyclotomic spectrum.
Again, let A = Ad, B = Bd and I = Id.

We will use the Segal conjecture for Cp. This is the statement that
the map

S→ StCp

identifies the codomain as the p-completion of the domain. For a proof of
this see [20, Theorem III.1.7], though the result was originally proved by
Lin [18] (for p = 2) and Gunawardena [10] (for p odd) in 1980.

Lemma 3.7. Let T be a bounded below spectrum with Cp-action and X a finite
pointed Cp-CW-complex. Then the lax symmetric monoidal structure map

TtCp ⊗ (Σ∞X)tCp −−−→ (T ⊗ Σ∞X)tCp

is an equivalence.

Proof. Since both TtCp ⊗ (−)tCp and (T ⊗−)tCp are exact functors we may
reduce to checking the statement for the Cp-spectra S and S⊗ Cp+. This is
because Σ∞X may be constructed from S and S⊗Cp+ using finitely many
cofiber sequences (since X is built by attaching finitely many Cp-cells).
Replacing Σ∞X by S the map in question reduces to

TtCp ⊗ Ŝp −−−→ TtCp

where we use the Segal conjecture to identify StCp ' Ŝp. Since T is
bounded below it follows from [20, Lemma I.2.9]) that TtCp is p-complete
and so the map is an equivalence. Replacing Σ∞X by S ⊗ Cp+ instead
we see that both the domain and codomain of the map are zero, since
(−)tCp kills induced spectra as well as spectra of the form T ⊗ Z where Z
is induced (cf. [20, Lemma I.3.8. (i) and (ii)]). �

We will describe the Frobenius map on

THH(k(Πd)) ' THH(k)⊗ Bcy(Πd)
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in terms of the splitting of Bcy(Πd) into the T-equivariant subspaces B(ω).
The unstable Frobenius ψp : Bcy(Πd) → Bcy(Πd)Cp (defined in Section 3.1)
restricts to a homeomorphism

ψp : B(ω)→ B(ω?p)Cp

landing in the subspace B(ω?p) corresponding to the cyclic word ω?p

which has length pm and period s (if ω has length m and period s).

Proposition 3.8. There is a T-equivariant equivalence of spectra

THH(A, B, I) '
⊕

THH(k)⊗ B(ω)

where the sum is indexed over cyclic words of length m ≥ 2, having no cyclic
repetitions. Under this equivalence the Frobenius map restricts to the map

THH(k)⊗ B(ω)
ϕp⊗ϕ̃p

−−−→ THH(k)tCp ⊗ B(ω?p)tCp −−−→ (THH(k)⊗ B(ω?p))tCp

where the second map is the lax symmetric monoidal structure of the Tate-Cp-
construction. This second map is an equivalence, while the restricted Frobenius
ϕ̃ : Σ∞B(ω)→ (Σ∞B(ω?p))tCp is a p-adic equivalence.

Proof. Applying Lemma 3.7 with T = THH(k) and X = B(ω?p) we get
that the map

THH(k)tCp ⊗ B(ω?p)tCp −−−→ (THH(k)⊗ B(ω?p))tCp

is an equivalence. It remains to show that

ϕ̃p : S⊗ B(ω)→ (S⊗ B(ω?p))tCp

is a p-adic equivalence. To do this we factor it as follows. To ease notation,
let Y = | sdp B(ω?p)|. By definition ϕ̃p factors as

S⊗ B(ω)
∆̃p

−−−→ S⊗YCp −−−→ (S⊗Y)tCp
Dp

−−−→ (S⊗ B(ω?p))tCp

where ∆̃p (the space-level diagonal) and Dp are a homeomorphisms as
remarked in Section 3.1. The middle map is the composition

ϕ̃ ′p : S⊗YCp
γ

−−−→ S⊗YhCp −−−→ (S⊗Y)hCp
can
−−−→ (S⊗Y)tCp

This map fits into the following commutative diagram
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S⊗YCp (S⊗Y)tCp

(S⊗YCp)hCp

StCp ⊗YCp (S⊗YCp)tCp

∆p⊗id

ϕ̃ ′p

can

can ◦ i

(1.)

(2.)

Here ∆p : S → StCp is a p-adic equivalence by the Segal conjecture. The
map labelled (1.) is the equivalence witnessing that (−)tCp is an exact
functor, and sdp B(ω?p)Cp is finite and has trivial Cp-action. The left-most
square commutes by construction of the map (1.). Indeed by exactness in
the variable YCp (a spectrum with trivial Cp-action) one reduces to the case
YCp = S where the square becomes

S ShCp

StCp StCp

∆p can

id

The map labelled (2.) is the equivalence witnessing that the inclu-
sion of the Cp-singular set BCp ⊆ B induces an equivalence

(T ⊗ BCp)tCp → (T ⊗ B)tCp

for any Cp-spectrum T and finite Cp-CW-complex B, cf. [14, Lemma 9.1.].
The right-most triangle (with (2.) as a side) commutes since can is natural.

Finally, in the top triangle, the map S⊗ YCp → (S⊗ YCp)hCp arises
since S⊗YCp has trivial Cp-action. By the universal property of (S⊗Y)hCp

it follows that the following diagram commutes.

S⊗YCp S⊗YhCp (S⊗Y)hCp

(S⊗YCp)hCp

This completes the proof. �
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I thank Malte Leip for abundant help with the above argument.

Corollary 3.1. Let ω be a cyclic word having no cyclic repetitions and length m.
The map

ϕ : THH(k)⊗ B(ω)→ (THH(k)⊗ B(ω?p))tCp

induces an isomorphism on homotopy groups in degrees greater than or equal to
m

Proof. The Frobenius map ϕ : THH(k) → THH(k)tCp induces an isomor-
phism on non-negative homotopy groups. This is shown in [20, Prop. IV.
4.13] for k = Fp, and in [14, Section 5.5] for k a perfect field of characteristic
p. The result now follows from Proposition 3.6 and Proposition 3.8 as can
be shown for example with the Atiyah-Hirzebruch spectral sequence. �

By Proposition 3.6 the homology of B(ω) depends only on the length
and period of ω. For ω of length m and period s we therefore introduce
the notation B(m, s) = B(ω). The function cycd(s) counts how many cyclic
words with no cyclic repetitions, of length s, and period s, there are. For
a fixed m there are cycd(s) many cyclic words with no cyclic repetitions,
of length m, and period s. Since the homology of B(m, s) depends only on
the parity of m and s (by Proposition 3.6) we may rewrite Proposition 3.8
as follows; if p > 2 then

THH(A, B, I) '
⊕

m≥2
even

⊕

s|m
even

(THH(k)⊗ B(m, s))⊕ cycd(s)(4)

⊕
⊕

m≥2
odd

⊕

s|m
odd

(THH(k)⊗ B(m, s))⊕ cycd(s).(5)

If p = 2 then we add the similar double sum indexed over m even and s
odd, i.e.

THH(A, B, I) '
⊕

m≥2
even

⊕

s|m
even

(THH(k)⊗ B(m, s))⊕ cycd(s)

⊕
⊕

m≥2
odd

⊕

s|m
odd

(THH(k)⊗ B(m, s))⊕ cycd(s)

⊕
⊕

m≥2
even

⊕

s|m
odd

(THH(k)⊗ B(m, s))⊕ cycd(s).
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Note that we do not need to know the homotopy-type of B(m, s)
for the above equivalences, since the homotopy type of THH(k)⊗ B(m, s)
is determined – using the Atiyah-Hirzebruch spectral sequence – from
the homology of B(m, s). It is the simplicity of the homology of B(m, s)
that makes it possible for us to compute the Atiyah-Hirzebruch spectral
sequence.

4. Negative - and periodic topological cyclic homology

In this section we compute TC−(A, B, I) and TP(A, B, I). We will need the
following general lemma about the Tate T-construction.

Lemma 4.1. Let {Xi}i≥0 be a sequence of spectra with a T-action, such that the
connectivity of (the underlying spectrum) Xi is unbounded, as i grows. Then the
canonical map (

⊕
i Xi)

tT →∏(Xi)
tT is an equivalence.

Proof. Because of the connectivity assumption the canonical map
⊕

Xi →∏
Xi is an equivalence. Consider the norm cofiber sequence

(ΣX)hT → XhT → XtT

The first term commutes with colimits, the second with limits, so we get
the cofiber sequence

⊕
(ΣXi)hT →

∏
XhT

i → (
⊕

Xi)
tT

Now (−)hG preserves connectivity for any group G. To see this one may
use the homotopy orbit spectral sequence whose E2-page consists of ordi-
nary group homology. Thus the cofiber sequence becomes

∏
(ΣXi)hT →

∏
XhT

i → (
⊕

Xi)
tT

and we see that (
⊕

i Xi)
tT →∏(Xi)

tT is an equivalence. �

4.1. The Tate spectral sequence. Let X be a T-spectrum. The Tate con-
struction TP(X) = XtT is the target of the Tate spectral sequence for the
circle group T, see [15, end of section 4.4], and also [1, section 3]. This
spectral sequence has the form

E2(T, X) = S{t±1}⊗ π∗X ⇒ π∗ TP(X)

Here t has bi-degree (−2, 0) and is a generator of H2(CP∞;Z). This spec-
tral sequence is conditionally convergent. When X = THH(R) is an E∞
algebra the spectral sequence is multiplicative, and if R is a k-algebra then
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Er(T, THH(R)) is a module over Er(T, THH(k)). By Bökstedt periodicity,
when k is a perfect field of characteristic p > 0 there is an isomorphism

THH∗(k) ' k[x]

with x in degree 2. In particular, in this case TP∗(R) is periodic. The
following is well-known.

Proposition 4.2. Let k be a perfect field of characteristic p > 0, then there is an
isomorphism

TP∗(k) 'W(k)[t±1]

Proof. By Bökstedt periodicity the E2-term of the spectral sequence takes
the form k[t±1]⊗ k[x], and since all classes are in even total degree there
are no non-trivial differentials on any page. Thus E2 = E∞ and it remains
to determine the extensions. Again by periodicity it suffices to show that
TP0(k) = W(k). For k = Fp this is done in [20, Cor. IV. 4.8.]. To conclude
the result for k we use functoriality along the map Fp → k. More precisely
we argue as follows. From the Tate spectral sequence we have a complete
descending multiplicative filtration

. . . ⊆ Fili+1(k) ⊆ Fili(k) ⊆ . . . Fil1(k) ⊆ Fil0 = TP0(k)

with associated graded gri(k) ' THH2i(k) ' k. By the universal property
of the p-typical Witt vectors W(k) [22, Chapter II, paragraph 5] we get a
unique multiplicative continous map W(k) → TP0(k). By functoriality we
have a commuting diagram

W(Fp) TP0(Fp)

W(k) TP0(k)

'

of ring homomorphisms. In particular the map on associated graded in-
duced by W(k) → TP(k) maps 1 to 1 and so must be an isomorphism. It
follows that W(k)→ TP(k) is itself an isomorphism. �

Proposition 4.3. Let k be a perfect field of characteristic p > 0. The elements x
and t± from the E2-page of the Tate spectral sequence are infinite cycles.

Proof. This is true for degree reasons, by Bökstedt periodicity. �
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Lemma 4.4. Let X be a T-spectrum such that the underlying spectrum is an
HZ-module . The d2 differential of the T-Tate spectral sequence is given by
d2(α) = td(α) where d is Connes’ operator.

Proof. See [11, Lemma 1.4.2] �

Following Proposition 3.6 we now choose some generators for the
homology of the spaces B(m, s). When m and s have the same parity
let z(m,s) be a generator for H̃m(B(m, s); k) and let y(m,s) a generator for
H̃m−1(B(m, s); k). When m is even and s is odd let z(m,s) be a generator of
H̃m−1(B(m, s); k). Finally, when p = 2 (so H̃m(B(m, s); k) is free of rank 1
over k) let w(m,s) be a generator.

Lemma 4.5. As an element of the E2-page of the Tate spectral sequence, z(m,s) is
an infinite cycle.

Proof. By [14, Theorem B] for any perfect field k of positive characteristic,
there is an equivalence τ≥0 TC(k) ' Zp. As a result we obtain a map

Zp ' τ≥0 TC(k)→ TC(k)→ TC−(k)→ THH(k).

which is T-equivariant, for the trivial T-action on the domain. It thus
induces a map of Tate spectral sequences,

E2 = Zp[t±1]{y(m,s), z(m,s)} π∗(Zp ⊗ B(m, s))tT

E2 = k[t±1, x]{y(m,s), z(m,s)} π∗(THH(k)⊗ B(m, s))tT

For degree reasons z(m,s) is an infinite cycle in the top spectral sequence.
It follows that z(m,s), viewed as a class in the bottom spectral sequence, is
an infinite cycle. �

4.2. TC− and TP of coordinate axes. In this section we compute TC− and
TP using the Tate spectral sequence. When p > 2. By Lemma 4.1 and
Section 3.5 we have

TP(A, B, I) '
∏

m≥2
even

∏

s|m
even

(
(THH(k)⊗ B(m, s))tT

)⊕ cycd(s)

⊕
∏

m≥2
odd

∏

s|m
odd

(
(THH(k)⊗ B(m, s))tT

)⊕ cycd(s)
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and likewise for negative topological cyclic homology, we have

TC−(A, B, I) '
∏

m≥2
even

∏

s|m
even

(
(THH(k)⊗ B(m, s))hT

)⊕ cycd(s)

⊕
∏

m≥2
odd

∏

s|m
odd

(
(THH(k)⊗ B(m, s))hT

)⊕ cycd(s)

When p = 2 there is an extra double product indexed over m ≥ 2
even and s | m odd (cf. Proposition 3.6 and Remark 3.1). See Section 4.3
below.

Since THH(k) is p-complete, it follows from [20, Lemma II. 4.2.] that
we may identify the homotopy T-fixed points of the Frobenius morphism
for THH(A, B, I) with the map induced by the product of the maps

ϕ(m, s) : (THH(k)⊗ B(m, s))hT → (THH(k)⊗ B(pm, s))tT.

Since the homotopy fixed point functor preserves co-connectivity, it fol-
lows from Corollary 3.1 that π∗ϕ(m, s) is an isomorphism when ∗ ≥ m.
Indeed, the fiber of

(THH(k)⊗ B(m, s))→ (THH(k)⊗ B(pm, s))tCp

has no homotopy groups above degree m− 1, hence the same is true of the
T-homotopy fixed point spectrum.

Proposition 4.6. Let k be a perfect field of characteristic p > 0. Let m ≥ 2 and
s | m. Write m = pvm ′ and s = pus ′ with m ′ and s ′ coprime to p.

(1) If both m and s are even then π∗((THH(k) ⊗ B(m, s))tT) as well as
π∗((THH(k)⊗ B(m, s))hT) are concentrated in even degrees and given
by

π2r((THH(k)⊗ B(m, s))tT) 'Wv−u(k)

and

π2r((THH(k)⊗ B(m, s))hT) '
{

Wv−u+1(k) 2r ≥ m
Wv−u(k) 2r < m

.

(2) If both m and s are odd, then π∗((THH(k) ⊗ B(m, s))tT) as well as
π∗((THH(k) ⊗ B(m, s))hT) are concentrated in odd degrees and given
by

π2r+1((THH(k)⊗ B(m, s))tT) 'Wv−u(k)
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and

π2r+1((THH(k)⊗ B(m, s))hT) '
{

Wv−u+1(k) 2r ≥ m
Wv−u(k) 2r < m

.

Proof. Suppose first that m and s are even. We proceed by induction on
v ≥ 0. Suppose v = 0, so m = m ′ and s = s ′. Consider the Tate spectral
sequence (cf. Section 4.1 )

E2 = k[t±1, x]{y(m ′,s ′), z(m ′,s ′)} ⇒ π∗(THH(k)⊗ B(m ′, s ′))tT

By Lemma 4.5 and Proposition 4.3 the differential structure is determined
by the differentials on y(m ′,s ′). Furthermore

d2(y(m ′,s ′))
.
= td(y(m ′,s ′))

.
= tiz(m ′,s ′)

by Lemma 4.4 and Proposition 3.6, where i = m ′/s ′. Here we use the
characterization of the d2-differential from Lemma 4.4. Since i is a unit in
k, d2 is an isomorphism. In summary, the E2-page looks as follows (where
we have dropped the indices for clarity).

y

z

xy

xz

...

ty t−1y t−2y · · ·· · ·

· · · · · ·· · ·

All the arrows indicate isomorphisms. Thus E3, hence E∞, is trivial
as claimed. To determine the T-homotopy fixed points, we truncate the
Tate spectral sequence, removing the first quadrant. Thus the class z(m ′,s ′)
and its multiples by xn, are no longer hit by differentials and so

E3 = E∞ = k[x]{z(m ′,s ′)}

where z(m ′,s ′) has degree m. This proves the claim for v = 0. The same
argument works for v > 0 and u = v, since in this case i is again coprime
to p.
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Suppose the claim is known for all integers less than or equal to
v and all u ≤ v. As we saw above, the homotopy fixed points of the
Frobenius map

π∗(THH(k)⊗ B(pvm ′, pus ′))hT → π∗(THH(k)⊗ B(pv+1m ′, pus ′))tT

is an isomorphism when ∗ ≥ pvm ′. The induction hypothesis implies
that the domain is isomorphic to Wv−u+1(k) when ∗ = 2r ≥ pvm ′. By
periodicity we conclude that

π2r(THH(k)⊗ B(pv+1m ′, pus ′))tT 'Wv−u+1(k)

for any r ∈ Z. Considering again the Tate spectral sequence we see that
we must have

d2(v−u)+2(y(pv+1m ′,pus ′))
.
= tz(pv+1m ′,pus ′)(xt)v−u

(see the figure, which is page E8 when v = 2 and u = 0) and so we
conclude that E2(v−u)+3 = E∞.

−14−13−12−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6

0
1
2
3
4
5
6
7
8
9

ytyt2y t−1y t−2y
.

. . .
. . .

. . .
.
.

z
xy
xz
x2y

...

.

.
.
.

. . .
. . .

.. . .

Truncating the spectral sequence we now see that

π2r(THH(k)⊗ B(pv+1m ′, pus ′))hT '
{

Wv−u+2(k) if 2r ≥ pv+1m ′

Wv−u+1(k) if 2r < pv+1m ′

This completes the proof of (1).
The arguments in case (2), where m and s are both odd, are very

similar. �

Remark 4.1. In particular this shows that TP(A, B, I) is non-trivial. This
may be contrasted with the Cuntz-Quillen result [4], that HP((A, B, I)/Q)
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is trivial, i.e. that rational periodic cyclic homology satisfies excision. Sim-
ilarly it is shown in [17] that TP does not satisfy nil-invariance. Here again
it is a result of Goodwillie [9] that rational periodic cyclic homology does
satisfy nil-invariance.

Suppose m ′ is even and let tev = tev(p, r, m ′) be the unique positive
integer such that ptev−1m ′ ≤ 2r < ptev m ′ (or zero if such tev does not exist,
i.e. if m ′ is too big). Then we may restate the TC− calculations as

π2r((THH(k)⊗ B(pvm ′, pus ′))hT) '
{

Wv−u+1(k) v < tev

Wv−u(k) v ≥ tev
.

Similarly if m ′ and s ′ are both odd, let tod = tod(p, r, m ′) be the unique
positive integer such that ptod−1m ′ ≤ 2r + 1 < ptod m ′ (or zero if such tod

does not exist, i.e. if m ′ is too big). Then

π2r+1((THH(k)⊗ B(pvm ′, pus ′))hT) '
{

Wv−u+1(k) v < tod

Wv−u(k) v ≥ tod
.

4.3. The case p = 2. We now deal with the case when k has characteristic
two. From Section 3.5 we see that the case m even and s odd, is missing
from Proposition 4.6.

Proposition 4.7. Assume p = 2, m even and s odd. Write m = 2vm ′ with m ′

odd, and let s ′ | m ′. Then the homotopy groups of (THH(k)⊗ B(m, s))tT and
(THH(k)⊗ B(m, s))hT are concentrated in odd degrees where they are isomorphic
to k.

Proof. When v = 0 we are in the case (2) of Proposition 4.6 so

π∗(THH(k)⊗ B(m ′, s ′))tT = 0

and

π∗(THH(k)⊗ B(m ′, s ′))hT = k when ∗ = 2r ≥ m ′.

From the high co-connectivity of the Frobenius we conclude that

π∗(THH(k)⊗ B(2m ′, s ′))tT = k

when ∗ is odd, and zero otherwise. Now the Tate spectral sequence

E2 = k[t±1, x]{z, w} ⇒ π∗(THH(k)⊗ B(2m ′, s ′))tT
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must collapse on the E2-page, from which we conclude that d2(w)
.
= (tx)z.

Truncating the spectral sequence we see the homotopy fixed point spectral
sequence has E3 = E∞ = (k[t, x]/(tx)){z} so

π∗(THH(k)⊗ B(2m ′, s ′))hT = k

in every odd degree. Now an induction argument shows that this pattern
continues for all v > 1. �

5. Topological cyclic homology of coordinate axes

In this section we complete the proof of Theorem 2.1, and thus Theo-
rem 1.1. We start with the case where p > 2. For 2 ≤ m ′ and s ′ | m ′

let

TP(m ′, s ′) :=
∏

0≤v

∏

u≤v

(
(THH(k)⊗ B(pvm ′, pus ′))tT

)cycd(pus ′)

and

TC−(m ′, s ′) :=
∏

0≤v

∏

u≤v

(
(THH(k)⊗ B(pvm ′, pus ′))hT

)cycd(pus ′)

Thus, TC(A, B, I) is identified with the product of the equalizer of the
maps ϕ, can : TC−(m ′, s ′) → TP(m ′, s ′) as m ′ and s ′ vary accordingly. Let
us denote by TC(m ′, s ′) the equalizer

TC(m ′, s ′)→ TC−(m ′, s ′)
ϕ

⇒
can

TP(m ′, s ′)

A priori the homotopy groups of TC(m ′, s ′) sit in a long exact sequence
with those of TC−(m ′, s ′) and TP(m ′, s ′). However this sequence splits into
short exact sequences since TC−(m ′, s ′) and TP(m ′, s ′) are concentrated in
either even or odd degrees, depending on the parity of m ′ and s ′, cf.
Proposition 4.6.

If m ′ and s ′ are even then the Frobenius map

π2r(THH(k)⊗ B(pvm ′, pus ′))hT −−−→ π2r(THH(k)⊗ B(pv+1m ′, pus ′))tT

is an isomorphism for 0 ≤ v < tev, and the canonical map

π2r(THH(k)⊗ B(pvm ′, pus ′))hT −−−→ π2r(THH(k)⊗ B(pvm ′, pus ′))tT
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is an isomorphism for tev ≤ v. Thus we have a map of short exact se-
quences

∏
tev≤v

∏
u≤v(Wv−u(k))cycd(pus ′) ∏

tev≤v
∏

u≤v(Wv−u(k)))cycd(pus ′)

TC−
2r(m

′, s ′) TP2r(m ′, s ′)

∏
0≤v<tev

∏
u≤v(Wv−u+1(k))cycd(pus ′) ∏

0≤v<tev

∏
u≤v(Wv−u(k)))cycd(pus ′)

ϕ−can

ϕ−can

ϕ−can

The top horizontal map is an isomorphism, and the bottom horizontal
map is an epimorphism so, by the snake lemma, we conclude that

TC2r(m ′, s ′) '
∏

u≤tev

(Wtev−u(k))cycd(pus ′).

Now suppose m ′ and s ′ are odd. Then the Frobenius map

π2r+1(THH(k)⊗ B(pvm ′, pus ′))hT → π2r+1(THH(k)⊗ B(pv+1m ′, pus ′))tT

is an isomorphism for 0 ≤ v < tod, and the canonical map

π2r+1(THH(k)⊗ B(pvm ′, pus ′))hT → π2r+1(THH(k)⊗ B(pvm ′, pus ′))tT

is an isomorphism for tod ≤ v. Thus we have a map of short exact se-
quences

∏
tod≤v

∏
u≤v(Wv−u(k))cycd(pus ′) ∏

tod≤v
∏

u≤v(Wv−u(k)))cycd(pus ′)

TC−
2r+1(m

′, s ′) TP2r+1(m ′, s ′)

∏
0≤v<tod

∏
u≤v(Wv−u+1(k))cycd(pus ′) ∏

0≤v<tod

∏
u≤v(Wv−u(k)))cycd(pus ′)

ϕ−can

ϕ−can

ϕ−can

The top horizontal map is an isomorphism, and the bottom horizontal
map is en epimorphism so, by the snake lemma, we conclude that

TC(m ′, s ′) '
∏

u≤tod

(Wtod−u(k))cycd(pus ′).
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This finishes the proof of Theorem 2.1 in the case p > 2.

5.1. The case p = 2. If p = 2 then we must correct slightly the definition
of TP(m ′, s ′) and TC−(m ′, s ′). Suppose m ′ and s ′ are odd. To deal with
the case m = pvm ′ even and s = pus ′ even, we let

TP(m ′, s ′)ev :=
∏

1≤v

∏

1≤u≤v

(
(THH(k)⊗ B(2vm ′, 2us ′))tT

)cycd(2
us ′)

and

TC−(m ′, s ′)ev :=
∏

1≤v

∏

1≤u≤v

(
(THH(k)⊗ B(2vm ′, 2us ′))hT

)cycd(2
us ′)

Both of these spectra are concentrated in even degrees, with their homo-
topy groups given by Proposition 4.6. As a result we see that, for m ′ ≥ 1
odd, and s ′ | m ′ odd,

TC2r(m ′, s ′)ev '
∏

1≤u≤tev

Wtev−u(k)⊕ cycd(2
us ′).

To deal with the case where m is even and s | m is odd, let

TP(m ′, s ′)ev,od :=
∏

0≤v

(
(THH(k)⊗ B(2vm ′, s ′))tT

)cycd(s
′)

and

TC−(m ′, s ′)ev,od :=
∏

0≤v

(
(THH(k)⊗ B(2vm ′, s ′))hT

)cycd(s
′)

(note that when v = 0, we have m = m ′ odd, but we must include this
case since the Frobenius connects it with the case v = 1) By Proposition 4.7
TP(m ′, s ′)ev,od and TC−(m ′, s ′)ev,od are concentrated in odd degrees, where
they are isomorphic to k. Thus

TC2r+1(m ′, s ′)ev,od '
∏

0≤v≤tev

k⊕ cycd(s
′).

This completes the proof of Theorem 2.1 when p = 2.

6. The characteristic zero case

In this section we compute the relative cyclic homology and the bi-relative
K-theory of Ad = k[x1, . . . , xd]/(xixj)i 6=j in the case that k is an ind-smooth
Q-algebra. In the case where k/Q is a field extension, the results in this
section were found, by different means, already in 1989 by Geller, Reid
and Weibel [8, Theorem 7.1.].
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We proceed as in [12, Section 3.9]. We will compute the relative
groups

HCq((A, I)/Z)⊗Q ' HCq((A, I)/Q)

using our understanding of the T-homotopy type of the cyclic bar con-
struction for Πd, as found in Lemma 3.5. First we need the following
analogue of Lemma 3.1

Lemma 6.1. Let k be a ring, Π a pointed monoid, and k(Π) the pointed monoid
algebra. There is a natural equivalence of T-spectra

HH(k(Π))
∼← HH(k)⊗ Bcy(Π)

So the arguments from Lemma 3.2 still work, yielding a description
of the relative (and bi-relative) Hochshild homology spectrum of (Ad, Id)

(and (Ad, Bd, Id)). First we note that the relative Hochschild homology
differs only slightly from the absolute version. The sole difference is that
we “cut out” the part of the space Bcy(Πd) given by Bcy(Πd;∅), i.e. the
part corresponding to the unique cyclic word of length zero. Since the
spaces B(m, s) for m even and s odd have torsion integral homology they
disappear in the rational case. So we conclude that

HH(A, I) '
⊕

m≥2
even

⊕

s|m
even

(HH(k)⊗ B(m, s))⊕ cycd(s)

⊕
⊕

m≥2
odd

⊕

s|m
odd

(HH(k)⊗ B(m, s))⊕ cycd(s)

⊕
⊕

i≥1

(HH(k)⊗ (T/Ci)+)
⊕d

where B(m, s) is given by Lemma 3.5. The bottom summands, with terms
HH(k)⊗ (T/Ci)+, corresponds to the spaces Bcy(Πd, xi

1) , Bcy(Πd, xi
2) etc.

These bottom summands disappear when looking at the bi-relative theory,
HH(A, B, I).

The following theorem is due to Geller, Reid, Weibel, [8, Corollary
3.12.]) when k is a field extension of Q.

Theorem 6.2. Let k be any commutative unital ring. There is an isomorphism

HC0(Ad/Q) ' HC0(k/Q)
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and, for q ≥ 1, an isomorphism

HCq((Ad, Id)/Q) '
⊕

m≥2
even

⊕

s|m
even

(
HHq+1−m(k) ⊗Q

)⊕ cycd(s)

⊕
⊕

m≥2
odd

⊕

s|m
odd

(
HHq+1−m(k)⊗Q

)⊕ cycd(s)

⊕
⊕

i≥1

(
HHq(k)⊗Q

)⊕d

Proof. We must compute πq(XhT) where X ranges over the summands in
the above decomposition of Bcy(Πd). If X = HH(k)⊗ Sλj ⊗ (T/Ci)+ for
some complex T-representation λj of complex dimension j, then since,

(
HH(k)⊗ Sλj ⊗T/Ci

)
hT
'
(

HH(k)⊗ Sλj
)

hCi
,

we may regard the Ci-homology spectral sequence

E2
s,t = Hs(Ci, πt(HH(k)⊗ Sλj)⊗Q)⇒ πs+t(HH(k)⊗ Sλj)hCi ⊗Q

Since the rational group homology of Ci is concentrated in degree 0, the
edge homomorphism

H0(Ci, πq(HH(k)⊗ Sλj)⊗Q)
'
−−−→ πq

((
HH(k)⊗ Sλj

)
hCi

)
⊗Q

is an isomorphism. Furthermore, since the Ci-action on HH(k)⊗ Sλj ex-
tends to a T-action, the induced action on homotopy groups is trivial. We
conclude that

πq

((
HH(k)⊗ Sλj

)
hT

)
∼= HHq−2j(k)

The result follows. �

The following theorem is due to Geller, Reid, Weibel, [8, Theorem
7.1.]) when k is a field extension of Q. We use their counting function
cd(q) which we recall in Section 7, Eq. (6).

Theorem 6.3. Suppose k is an ind-smooth Q-algebra. Let d ≥ 2 and consider
the ring Ad = k[x1, . . . , xd]/(xixj)i 6=j, and let Id = (x1, . . . , xd). Then

Kq(Ad, Id) ∼= k⊕cd(q) ⊕ (Ω1
k/Q)

⊕cd(q−1) ⊕ · · · ⊕ (Ωq−2
k/Q

)⊕cd(2).

Proof. By [3, Corollary 0.2] we have Kn(Ad, Id) ' HCn−1(Ad, Bd, Id). Here
we use that Kq(Ad, Id) is a rational vector space [3, Theorem 0.1], so no
further rationalization is necessary. By Theorem 6.2 we are reduced to
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Hochschild homology calculations. By the Hochschild-Kostant-Rosenberg
theorem [23, Theorem 9.4.7.] we have

HHn(k/Q) ' Ωn
k/Q.

Thus,

Kq(Ad, Id) ' HCq−1(Ad, Bd, Id)

' k⊕cd(q) ⊕ (Ω1
k/Q)

⊕cd(q−1) ⊕ · · · ⊕ (Ωq−2
k/Q

)⊕cd(2)

This completes the proof. �

Remark 6.1. If k is a field extension of Q for which we know the tran-
scendence degree of k over Q then this result completely determines the
relative K-theory, since dimk Ω1

k/Q
= tr.deg(k/Q). For example if k/Q is

algebraic then Ω1
k/Q

= 0 and so the calculation reduces to

Kq(Ad, Id) ' k⊕cd(q).

7. Appendix: counting cyclic words

In this section we use some counting techniques inspired by [8]. We first
deal with all words, then with cyclic words. Let Ad(m) denote the number
of words in d letters of length m having no cyclic repetitions.

Lemma 7.1. For all d ≥ 1 and all m ≥ 1 we have

Ad(m) = (d − 1)m + (−1)m(d − 1).

Proof. Define the auxiliary counter, Bd(m) counting words ω = w1w2 . . . wm

with no allowed repetitions, except that we require wm = w1. Then

Ad(m) + Bd(m) = d(d − 1)m−1.

To see this, consider a word ω = w1w2 . . . wm. There are d choices for w1,
and d − 1 choices for w2, w3, . . . and wm−1. Finally for wm there are again
d choices since choosing any letter different from wm−1 gives either a type
A (d − 2 possibly choices) or a type B word (one choice, namely wm =

w1). The formula for Ad(m) now follows by induction using the equation
Bd(m) = Ad(m− 1) (for m ≥ 2). This last equality is true since deleting the
last letter of a type B word yields a word with no cyclic repetitions. �
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Let c̃ycd(s) denote the number of words in d letters of length s, pe-
riod s and having no cyclic repetitions (see Definition 3.1) and let cycd(s)
denote the number of cyclic words in d letters of length s, period s and
having no cyclic repetitions. Then cycd(s) =

1
s c̃ycd(s). Also we have

Ad(m) =
∑

s|m

c̃ycd(s)

So using Möbius inversion we have

c̃ycd(s) =
∑

j|s

µ(
s
j
)Ad(j).

hence we obtain a formula for cycd(s),

cycd(s) =
1
s

∑

j|s

µ(
s
j
)((d − 1)j + (−1)j(d − 1)).

Below is a table of the first few values.

s cycd(s) d = 3 d = 4

1 0 0 0

2 1
2 ((d − 1)2 + (d − 1)) 3 6

3 1
3 ((d − 1)3 − (d − 1)) 2 8

4 1
4 ((d − 1)4 − (d − 1)2) 3 18

5 1
5 ((d − 1)5 − (d − 1)) 6 48

6 1
6 ((d − 1)6 − (d − 1)3 − (d − 1)2 + (d − 1)) 9 116

7 1
7 ((d − 1)7 − (d − 1)) 18 312

8 1
8 ((d − 1)8 − (d − 1)4) 30 810

9 1
9 ((d − 1)9 − (d − 1)3) 56 2184

10 1
10 ((d − 1)10 − (d − 1)5 − (d − 1)2 + (d − 1)) 99 5880

11 1
11 ((d − 1)11 − (d − 1)) 186 16104

12 1
12 ((d − 1)12 − (d − 1)6 − (d − 1)4 + (d − 1)2) 335 44220
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If we want to count the number of cyclic words without cyclic repetitions,
with length m but with no restrictions on period then we can just sum
cycd(s) over all divisors s of m. For example there are 3 + 2 + 9 = 14 cyclic
words in d = 3 letter, with no repetitions having length m = 6.

We may describe the function cd−1(m) that Geller, Reid, and Weibel
introduce as follows

(6) cd−1(m) =
∑

s|m
s≡m mod 2

cycd−1(s).

That is, cd−1(m) is the number of cyclic words without repetitions, having
length m and period s where s and m have the same parity.
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1. Introduction

The algebraic K-theory of truncated polynomial algebras over perfect fields

of positive characteristic was first evaluated by Hesselholt and Madsen [6].

Their proof relied on a delicate analysis of the facet structure of regular

cyclic polytopes. We present a new proof that only uses the homology of

the cyclic bar construction together with Connes’ operator.

Theorem 1.1. [6, Theorem A] Let k be a perfect field of positive characteristic.
Then there is an isomorphism

K2r−1(k[x]/(xe), (x)) 'Wre(k)/VeWr(k)

and the groups in even degrees are zero.

We briefly summarize the method. Let k be a perfect field of charac-

teristic p > 0 and let A = k[x]/(xe) and I = (x) the ideal generated by the

variable. The k-algebra A is the pointed monoid algebra for the pointed

monoid Πe = {0, 1, x, . . . , xe−1} determined by xe = 0. There is a canonical

equivalence of cyclotomic spectra

THH(A) ' THH(k)⊗ Bcy(Πe)

where the Frobenius morphism on the right is the tensor product of the

usual Frobenius and the unstable Frobenius on the cyclic bar construction

of Πe. Using the theory of cyclic sets one obtains a T-equivariant splitting

of the cyclic bar construction,

Bcy(Πe) '
∨

m≥0

B(m)

into simpler T-spaces B(m). The singular homology and Connes’ oper-

ator of these T-spaces is easily determined and reduces to computations
1
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of the Hochschild homology of A first carried out in [2] and [9]. The

answer is simple enough that the Atiyah-Hirzebruch spectral sequence

degenerates allowing us to directly determine the homotopy groups of

THH(k)⊗ B(m). From [11] the topological cyclic homology of A is given

by the equalizer

TC(A; p)→ TC−(A)
ϕp−can
−−−→ TP(A)

so using the above splitting this reduces to computing (THH(k)⊗ B(m))hT

and (THH(k)⊗ B(m))tT. We achieve this by an inductive procedure, mak-

ing use of the highly co-connective Frobenius map

ϕ : (THH(k)⊗ B(m))hT → (THH(k)⊗ B(pm))tT

and the periodicity of (THH(k) ⊗ B(m))tT. Assembling the answers for

varying m then yields the TC-calculation. Applying McCarthy’s theorem

one obtains the result.

We note that the method used here has recently been applied by

Hesselholt and Nikolaus [8] to compute the K-theory of cuspidal curves

over k, thereby verifying the conjectural result from [4]. We consider this

method a first step towards making topological cyclic homology as easy

to compute as Connes’ cyclic homology HC.

1.1. Acknowledgements. I would like to thank Lars Hesselholt for his

generous and valuable guidance while working on this project. I would

also like to thank Ryo Horiuchi and Malte Leip for several useful conver-

sations during the writing of this paper.

2. Witt vectors, big and small

The purpose of this short section is to show the following well-known

splitting. Let s = s(p, r, d) be the unique positive integer such that

ps−1d ≤ r < psd

if it exists, or else s = 0. Let e = pue ′ with (p, e ′) = 1.

Lemma 2.1. Let k be a perfect field of characteristic p > 0. There is an isomor-
phism

Wre(k)/VeWr(k) '
∏

Wh(k)
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where the product is indexed over 1 ≤ m ′ ≤ re with (p, m ′) = 1 and with
h = h(p, r, e, m ′) given by

h =

{
s if e ′ - m ′

min{u, s} if e ′ | m ′

where s = s(p, re, m ′) is the function defined above.

Proof. We use the isomorphism

Wr(k)
〈Id〉
−−−→

∏
Ws(k)

(natural with respect to Z(p)-algebras) where the product runs over d such

that (p, d) = 1 and 1 ≤ d ≤ r and where s = s(p, r, d), see for example

[5, Prop. 1.10 and Example 1.11]. The d’th component of this map is the

composite

Id : Wr(k)
Fd→Wbr/dc(k)

pr→Ws(k)

where Fd is the Frobenius map. If m ′ = e ′d with d ≤ r then one read-

ily checks that s(p, re, m ′) = s(p, r, d) + u and that the following diagram

commutes

Wr(k) Ws(k)

Wre(k) Ws+u(k)

Id

Ve e ′Vpu

Im ′

This corresponds to the case u ≤ s. Since (p, e ′) = 1 we have

Ws+u(k)/(e ′VpuWs(k)) ∼= Wu(k).

Thus, we get an isomorphism

Wre(k)/VeWr(k)
'→
∏

Wu(k)×
∏

Ws(k)×
∏

Ws(k)
'→
∏

Wh(k)

where in the middle term, the first product is indexed over 1 ≤ d ≤ r with

(p, d) = 1, the second product is indexed over 1 ≤ m ′ ≤ re with e ′ | m ′ and

with u > s, the third product is indexed over 1 ≤ m ′ ≤ re with e ′ - m ′ and

with (p, m ′) = 1. In the last term, the product is indexed over 1 ≤ m ′ ≤ re
with (p, m ′) = 1. �
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3. Hochschild homology of truncated polynomial algebras

In this section we review the results of [2] and [9] on cyclic homology of

algebras of the form A = k[x]/ f (x). We work over a general commutative

unital base ring k. The Hochschild homology of A over k is the homology

of the associated chain complex for the cyclic k-module

Bcy(A/k)[n] = A⊗n+1

where the tensor product is over k. The cyclic structure maps are given as

follows

di(a0 ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an 0 ≤ i < n
ana0 ⊗ a1 ⊗ · · · ⊗ an−1 i = n

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an

tn(a0 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1.

The Hochschild homology then is the homology HH∗(A/k) of the

associated chain complex with differential given by the alternating sum of

the face maps.

Proposition 3.1. Let A = k[x]/(xe) where k is a commutative unital ring.
There is an isomorphism

HH∗(A/k) =





A if ∗ = 0

ek{1}⊕ k{x, . . . , xe−1} if ∗ > 0 even
k{1, x, . . . , xe−1}⊕ k/ek{xe−1} if ∗ > 0 odd

where ek denotes the e-torsion elements of k.

The proof uses a common technique for such rings, namely the con-

struction of a small and computable complex. The task is then to show

that this complex is quasi-isomorphic to the Hochschild complex. For a k-

algebra A of the form A = k[x]/( f (x)), assuming it is flat as an k-module

then the Hochschild homology may be calculated as TorAe

∗ (A, A) where

Ae = A⊗ Aop. So it suffices to find a small A−A-bimodule resolution of

A. Given such a resolution R(A)∗ → A one now tensors over Ae with A
to get a complex, R(A)∗ computing HH∗(A/k). For an appropriate choice

of resolution the corresponding complex R(A)∗ has the following form

0← A 0← A
f ′(x)← A 0← A

f ′(x)← A← · · ·
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from which the result readily follows.

We now introduce a splitting of the Hochschild homology of the k-

algebra A = k[x]/(xe). Equip A with a “weight” grading by declaring xm

have weight m. This induces a grading on the tensor powers of A and we

let

Bcy(A/k;m)[n] ⊆ Bcy(A/k)[n] = A⊗n+1

be the sub k-module of weight m. It is generated by those tensor mono-

mials whose weight is equal to m. This forms a sub cyclic k-module of

Bcy(A/k)[−] and so we obtain a splitting

Bcy(A/k)[−] '
⊕

m≥0

Bcy(A/k;m)[−]

of cyclic k-modules, and of the associated chain complexes. Taking homol-

ogy then gives a splitting as well,

HH∗(A/k) '
⊕

m≥0

HH∗(A/k;m).

In the following lemma, let d = d(e, m) = bm−1
e c be the largest integer less

that (m − 1)/e .

Lemma 3.1. Let k and A be as in Proposition 3.1. If m is not a multiple of e then
HH∗(A/k;m) is concentrated in degrees 2d and 2d + 1 where it is free of rank 1

as a k-module. In this case Connes’ B-operator takes the generator in degree 2d to
m times the generator in degree 2d + 1, up to a sign. If m is a multiple of e then
HH∗(A/k;m) is concentrated in degree 2d + 1 and 2d + 2. The group in degree
2d + 1 is isomorphic to k/ek while the group in degree 2d + 2 is isomorphic to

ek. In this case Connes’ operator acts trivially.

Proof. First we prove that the groups are as stated. We follow the proof

given in [7, Section 7.3.]. Consider the resolution of A as an A⊗ A-module

constructed by [2], denoted R(A)∗ having the form

· · ·
∆
−−−→ A⊗ A

δ
−−−→ A⊗ A

∆
−−−→ A⊗ A

δ
−−−→ A⊗ A

µ

−−−→ A→ 0

where

∆ =
xe ⊗ 1 − 1⊗ xe

x⊗ 1 − 1⊗ x
and δ = 1⊗ x − x⊗ 1

In [2] a quasi-isomorphism ψ : R(A/k)∗ −−−→ B(A/k)∗ with the bar-

resolution is constructed. Since ∆ increases the weight by e − 1 and δ by 1,



6 MARTIN SPEIRS

and since the differential b ′ of the bar resolution preserves weight, we see

(by induction on j) that ψ2j increases weight by je, whereas ψ2j+1 increases

weight by je + 1. Tensoring over Ae with A gives a quasi-isomorphism

ψ : R(A/k)∗ −−−→ Bcy(A/k)∗ which has the same weight shift. The result

now follows from Proposition 3.1

For the statements about Connes’ operator, this follows by an explicit

choice of a quasi-isomorphism ψ (and its inverse). This is done in [2,

Section 1] and in [2, Proposition 2.1.] the computation of Connes’ operator

is given. �

4. Topological Hochschild homology and the cyclic bar

construction

Let Πe = {0, 1, x, . . . , xe−1} be the pointed monoid determined by setting

xe = 0. Then the truncated polynomial algebra A is the pointed monoid

ring k(Πe) = k[Πe]/k[0]. The cyclic bar construction of Πe is the cyclic set

Bcy(Πe)[−] with

Bcy(Πe)[k] = Π∧(k+1)
e

and with the usual Hochschild-type structure maps. We write Bcy(Πe) for

the geometric realization of Bcy(Πe)[−]. The space Bcy(Πe) admits a natu-

ral T-action where T is the circle group, as does the geometric realization

of any cyclic set. Furthermore it is an unstable cyclotomic space, i.e. there

is a map

ψp : Bcy(Π)→ Bcy(Π)Cp

which is equivariant when the domain is given the natural T/Cp-action.

For a construction of this map see [1, Section 2] or, for a review in our

setup, see [12, Section on cyclic bar construction].

To every non-zero n-simplex π0 ∧ · · ·∧πn ∈ Bcy(Πe)[n] we associate

its weight as follows, each πi is equal to xmi for some 0 ≤ mi ≤ e − 1. Let

w(π0 ∧ · · ·∧ πn) =
n∑

i=0

mi.

The weight is preserved by the cyclic structure maps and so we obtain a

splitting of pointed cyclic sets

Bcy(Πe)[−] =
∨

m≥0

Bcy(Πe;m)[−]
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where Bcy(Πe;m)[−] ⊆ Bcy(Πe)[−] consists of all simplicies with weight

m. Let B(m) denote the geometric realization of Bcy(Πe;m)[−]. So we have

a splitting of pointed T-spaces

Bcy(Πe) '
∨

m≥0

B(m).

By [12, Splitting lemma] we have THH(k(Πe)) ' THH(k)⊗Bcy(Πe) as cy-

clotomic spectra. Here the Frobenius on the right hand side is the tensor

product of the usual Frobenius on THH(k) (as constructed in [11, Sec-

tion III.2]) and the Frobenius on Σ∞ Bcy(Πe) arising from the unstable

Frobenius (see [12, Section on cyclic bar construction]). The relative THH

corresponds to simply cutting out the weight zero part, i.e. we have an

equivalence of T-spectra

THH(A, I) '
⊕

m≥1

THH(k)⊗ B(m)

where I = (x) is the ideal generated by the variable.

Given any pointed monoid Π there is an isomorphism of cyclic k-

modules

w : k(Bcy(Π)[−]) −−−→ Bcy(k(Π)/k)[−]

which map π0 ∧ · · ·∧ πn to π0 ⊗ · · · ⊗ πn. Note that k(Bcy(Π)[−]) is the

cellular complex for the space Bcy(Π). In particular the associated homol-

ogy H∗(k(Bcy(Π)[−])) computes the cellular homology of Bcy(Π).

In the following lemma, we let d = d(e, m) = bm−1
e c for any m ≥ 1.

Lemma 4.1. ([7, Lemma 7.3]) Let k and A be as in Proposition 3.1 and let

B(m) ⊆ Bcy(Πe) be as described above.

(1) If e - m then H̃∗(B(m);Z) is free of rank 1 if ∗ = 2d, 2d + 1 and

zero, otherwise. The Connes’ operator takes a generator in degree

2d to m times a generator in degree 2d + 1.

(2) If e | m then H̃∗(B(m);Z) is isomorphic to k/ek if ∗ = 2d + 1, to ek
if ∗ = 2d + 2, and zero otherwise.

Proof. We use the isomorphism of cyclic k-modules

w : k(Bcy(Πe)[−])→ Bcy(A/k)[−]
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This map preserves the weight decomposition, mapping k(B(m)[−]) iso-

morphically to Bcy(A/k;m)[−]. Furthermore the map commutes with the

Connes operator, as shown in the proof of [3, Proposition 1.4.5.]. Now by

Lemma 3.1 we can read off what

HH∗(A/k;m) = H̃∗(B(m); k)

is and how Connes’ operator acts. �

Note that in particular H̃2d+2(B(m); k) is free of rank 1 over k, when

e is zero in k. Thus there is room for a non-trivial Connes’ operator in this

case. However, it follows again from Lemma 3.1 that it is trivial in this

case.

Lemma 4.2. Let T be a bounded below Cp-spectrum and X a finite pointed Cp-
CW-complex. Then the lax symmetric monoidal structure map

TtCp ⊗ (Σ∞X)tCp −−−→ (T ⊗ Σ∞X)tCp

is an equivalence.

Proof. See [12, Lemma 3.5.1]. �

Proposition 4.1. Let A = k[x]/(xe). There is a T-equivariant equivalence of
spectra

THH(A) '
⊕

m≥0

THH(k)⊗ B(m).

Under this equivalence the Frobenius morphism THH(A) → THH(A)tCp re-
stricts to the map

THH(k)⊗ B(m) −−−→ THH(k)tCp ⊗ B(pm)tCp −−−→ (THH(k)⊗ B(pm))tCp

where the second map is the lax symmetric monoidal structure on the Tate-Cp-
construction. This second map is an equivalence, while the restricted Frobenius
ϕ̃ : Σ∞B(m)→ (ΣB(pm))tCp is a p-adic equivalence.

Proof. The proof follows that of the similar statement in [12, Proposition

3.5.1]. Taking T = THH(k) and X = B(m) in Lemma 4.2 yields the claim

about the lax symmetric monoidal structure map. To see that the restricted

Frobenius is a p-adic equivalence, one factors it accordingly as follows.
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S⊗ B(m) (S⊗ B(pm))tCp

StCp ⊗ (sdp B(pm))Cp (S⊗ sdp B(pm)C
p )

tCp (S⊗ B(pm)Cp)tCp

∆p⊗∆̃p

ϕ̃

(1.) Dp

(2.)

Now the Segal conjecture says that ∆p : S → StCp is a p-adic equivalence.

The map labelled (1.) is an equivalence since sdp B(pm)Cp is a finite Cp-

CW-complex with trivial Cp-action, and since (−)tCp is exact. The map

Dp is the equivalence from the p-subdivision of B(pm) to B(pm) itself.

Finally, the map labelled (2.) is an equivalence since (−)tCp is trivial on

free Cp-CW-complexes, cf. [7, Lemma 9.1.]. �

Corollary 4.1. The restricted Frobenius map

ϕ(m) : THH(k)⊗ B(m)→ (THH(k)⊗ B(pm))tCp

induces an isomorphism in degrees ≥ 2d + 1 when e - m, and induces an isomor-
phism in degrees ≥ 2d + 2 when e | m.

Proof. This follows readily from Proposition 4.1 and Lemma 4.1 using the

Atiyah-Hirzebruch spectral sequence. �

5. Negative and periodic topological cyclic homolgy

We compute TP and TC− using an inductive procedure based on the p-

adic valuation of the integer m in indexing the T-space B(m). We choose

generators for the homology of the spaces B(m). If e - m let ym and zm be

generators for the homology in degree 2d and 2d + 1, respectively. If e | m
and p | e then we let zm and wm be generators of the homology in degree

2d + 1 and 2d + 2, respectively.

Lemma 5.1. In the Tate spectral sequence for π∗(THH(k)⊗ B(m)) the class zm

is an infinite cycle for all m.

Proof. Although the statement does not seem to require it, we must deal

with the cases e | m and e - m separately. In both cases we use the T-

equivariant map HZp → THH(k). One way of getting such a map is by us-

ing the calculation τ≥0 TC(k) = HZp since then we have the T-equivariant
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map

HZp ' τ≥0 TC(k)→ TC(k)→ TC−(k)→ THH(k).

This map induces a map of Tate spectral sequences from π∗(HZp⊗ B(m))

to π∗(THH(k)⊗ B(m)).

Suppose first that e - m. Then from Lemma 4.1 we may compute the

E2-page of the Tate spectral sequence for HZp ⊗ B(m) to be

E2 = Zp[t±1]{ym, zm} ⇒ π∗(HZp ⊗ B(m))tT

where |ym| = (0, m − 1) and |zm| = (0, m). The differential structure is

determined by d2(ym) = mtzm, and so E3 = E∞ = Zp/mZp[t±1]{zm} so zm

is an infinite cycle. It follows that zm ∈ k[t±1, x]{ym, zm} (the E2 page for

the target spectral sequence) is an infinite cycle.

Now suppose e | m. Then from Lemma 4.1 we may compute the

E2-page of the Tate spectral sequence for HZp ⊗ B(m) to be Zp[t±1]{zm}

with |zm| = (0, m) from which it follows immediately that zm is an infinite

cycle. �

Lemma 5.2. Let X be a T-spectrum such that the underlying spectrum is an
HZ-module . The d2 differential of the T-Tate spectral sequence is given by
d2(α) = td(α) where d is Connes’ operator.

Proof. See [3, Lemma 1.4.2] �

Proposition 5.1. If e - m then

π2r+1(THH(k)⊗ B(pvm ′))tT 'Wv(k)

for all r ∈ Z, and

π2r+1(THH(k)⊗ B(pvm ′))hT '
{

Wv+1(k) if d ≤ r
Wv(k) if r < d

The even homotopy groups are trivial.

Proof. We proceed by induction on v ≥ 0. Suppose v = 0, so m = m ′, and

consider the Tate spectral sequence

E2 = k[t±1, x]{ym ′ , zm ′ } ⇒ π∗(THH(k)⊗ B(m ′))tT
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By Lemma 5.1 the only possible non-zero differentials are those beginning

at ym ′ . Furthermore

d2(ym ′)
.
= m ′td(ym ′)

.
= m ′tzm ′

by Lemma 5.2 and Lemma 4.1. Since m ′ is a unit in k, d2 is an isomor-

phism. In summary, the E2-page looks as follows (shifted up by 2d in the

horizontal direction).

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

5

6

tym ′t2ym ′ t−1ym ′ t−2ym ′

xym ′

ym ′

zm ′

xzm ′

x2ym ′

x2zm ′

x3ym ′

Thus E3 = E∞ = 0 is trivial, as claimed. To determine the T-

homotopy fixed points, we truncate the Tate spectral sequence, removing

the first quadrant. The classes zm ′xn are no longer hit by differentials and

so E3 = E∞ = k[x]{zm ′ } where zm ′ has degree 2d+ 1. This proves the claim

for v = 0.

Suppose the claim is known for all integers less than or equal to v.

By Proposition 4.1 the Frobenius

ϕ(pvm ′) : π∗(THH(k)⊗ B(pvm ′))hT → π∗(THH(k)⊗ B(pv+1m ′))tT

is an isomorphism in high degrees. The induction hypothesis then implies

that the domain is isomorphic to Wv+1(k) when ∗ = 2r + 1 ≥ 2d + 1. By

periodicity we conclude that π∗(THH(k)⊗ B(pv+1m ′))tT is concentrated

in odd degrees where,

π2r+1(THH(k)⊗ B(pv+1m ′))tT 'Wv+1(k)
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for any r ∈ Z. Considering again the Tate spectral sequence we see that

we must have

d2v+2(ypv+1m ′)
.
= tzpv+1m ′(xt)v

and so E2v+3 = E∞. Truncating the spectral sequence to obtain the homo-

topy fixed-point spectral sequence, we now see that

π2r+1(THH(k)⊗ B(pv+1m ′))hT '
{

Wv+2(k) if d ≤ r
Wv+1(k) if r < d

This completes the proof. �

To deal with the case where e does divide m we factor e = pue ′

where (p, e ′) = 1. Thus e | pvm ′ if and only if v ≥ u and e ′ | m ′.

Proposition 5.2. If e | m then

π2r+1(THH(k)⊗ B(pvm ′))tT 'Wu(k)

and

π2r+1(THH(k)⊗ B(pvm ′))hT 'Wu(k)

for all r ∈ Z.

Proof. We use induction on v ≥ u. Suppose v = u. Then

π∗(THH(k)⊗ B(pv−1m ′))hT
ϕ(pv−1m ′)
−−−→ π∗(THH(k)⊗ B(pvm ′))tT

is an isomorphism in high enough degrees. The domain was evaluated

in Proposition 5.1, it is Wu(k) in odd degrees greater than 2d + 1. By

periodicity we conclude the result of the codomain. Now suppose the

result has been verified for all integers greater than u and strictly less than

v. Again using the Frobenius we conclude that

π2r+1(THH(k)⊗ B(pvm ′))tT 'Wu(k)

for all r ∈ Z.

Consider the Tate spectral sequence with E2-page k[t±1, x]{zm, wm}.

Since zm is an infinite cycle the only possible way that this sequence col-

lapses to yield the correct result is if

d2u(wm)
.
= (tx)uzm
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Thus E2u+1 = E∞. As before, by truncating the first quadrant, we get the

spectral sequence for the homotopy T-fixed points whose E2u-page clearly

shows the result. �

6. Topological cyclic homology

We now prove Theorem 1.1. By McCarthy’s result [10, Main Theorem] it

suffices to prove the following.

Theorem 6.1. Let k be a perfect field of positive characteristic. Then there is an
isomorphism

TC2r−1(k[x]/(xe), (x)) 'Wre(k)/VeWr(k)

and the groups in even degrees are zero.

Proof. In view of Lemma 2.1 it suffices to give an isomorphism

TC2r−1(k[x]/(xe), (x)) '
∏

Wh(k)

where the product is indexed over 1 ≤ m ′ ≤ re with (p, m ′) = 1 and with

h = h(p, r, e, m ′) given by

h =

{
s if e ′ - m ′

min{u, s} if e ′ | m ′

where s = s(p, re, m ′) is such that ps−1m ′ ≤ re < psm ′. Now TC(A, I) is

given as the equalizer of TC−(A, I)
ϕ−can
−−−→ TP(A, I). This map splits as

∏

m ′≥1
(p,m ′)=1

∏

v≥0

TC−(pvm ′)
ϕ−can
−−−→

∏

m ′≥1
(p,m ′)=1

∏

v≥0

TP(pvm ′)

By Proposition 5.1 and Proposition 5.2 both TC−(pvm ′) and TP(pvm ′) are

concentrated in odd degrees, so the long exact sequence calculating TC

splits into short exact sequences

0→ TC∗(m ′)→
∏

v≥0

TC−
∗ (pvm ′)

ϕ−can
−−−→

∏

v≥0

TP∗(pvm ′)→ 0
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Now if e ′ - m ′ then from Proposition 5.1 we have a map of short exact

sequences

0
∏

v≥s Wv(k) TC−
2r+1(pvm ′)

∏
0≤v<s Wv+1(k) 0

0
∏

v≥s Wv(k) TP2r+1(pvm ′)
∏

0≤v<s Wv(k) 0

ϕ−can ϕ−can ϕ−can

where s = s(p, r, d(pvm ′)). The left hand vertical map is an isomorphism

(since in this range can is an isomorphism and ϕ is divisible by powers of

p) and the right hand vertical map is an epimorphism with kernel Ws(k).
Thus TC(pvm ′) = Ws(k). Note that in this case h = s.

If e ′ | m ′ then we must distinguish between two cases. First, if s < u
then again we get a map of short exact sequences

∏
s≤v<u Wv(k)×

∏
u≤v Wu(k) TC−

2r+1(pvm ′)
∏

0≤v<s Wv+1(k)

∏
s≤v<u Wv(k)×

∏
u≤v Wu(k) TP2r+1(pvm ′)

∏
0≤v<s Wv(k)

ϕ−can ϕ−can ϕ−can

so in this case TC2r+1(m ′) = Ws(k) Since u > s we have h = s as claimed.

If instead, u ≤ s then the map of short exact sequences looks as follows

∏
v≥s Wv(k) TC−

2r+1(pvm ′)
∏

0≤v<u Wv+1(k)×
∏

u≤v<s Wu(k)

∏
v≥s Wv(k) TP2r+1(pvm ′)

∏
0≤v<u Wv(k)×

∏
u≤v<s Wu(k)

ϕ−can ϕ−can ϕ−can

so in this case TC2r+1(m ′) = Wu(k). Since u ≤ s we see that u = h in this

case. This completes the proof. �
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